Water Quality Standards Human Health Criteria Workgroup

October 28, 2020

Laura Cooper

Assistant Director DWWM, Water Quality Standards

Laura.k.cooper@wv.gov

Oct 28, 2020 Meeting Agenda Human Health Criteria (HHC) Workgroup

- Introductions & Welcome of EPA Staff
- Quick review our previous meetings, July September
- Q&A with EPA on HHC bioaccumulation factors
- Revisit HHC Workgroup Plan & outcomes
- Plan next meeting and conclude

Review of HHC Workgroup Meetings

July

- Calculation changes in EPA 2015 recommended criteria
- WV Risk Factor for carcinogens: 1 in a million
- Went over each factor in EPA's equation
- Other States what neighboring states are doing on HHC

Equation for calculation Consumption of Water & Fish

AWQC (μ g/L) = toxicity value (mg/kg-d) × BW (kg) × 1,000 (μ g/mg)^b DI (L/d) + $\sum_{i=2}^{4}$ (FCR_i (kg/d) × BAF_i (L/kg))

AWQC	= ambient water quality criteria
toxicity value	= either reference dose multiplied by relative source contribution or cancer slope factor, adjusted by 10 ⁻⁶
BW	= body weight
DI	= drinking water intake
$\sum_{i=2}^{4}$	= sum of values for aquatic trophic levels
FCR _i	= fish consumption rate for aquatic Trophic Levels 2, 3, and 4
BAF _i	= bioaccumulation factor for aquatic TLs 2, 3, and 4

Review of HHC Workgroup Meetings

August

- IRIS updates to toxics data after EPA's 2015 revision, esp. Benzo(a)pyrene
- Went thru example EPA criteria document
- EPA's decision-making on drinking water intake and body weight numbers

Exposure Factors Handbook

Chapter 3-Ingestion of Water and Other Select Liquids

Table 3-33. Consumers-Only Estimates of Combined Direct and Indirect Water Ingestion Based on NHANES 2003-2006: Community Water (mL/day)

A	Sample	Many	Percentile									
Age	size	Mean -	10	25	50	75	90	95	99			
Birth to <1 month	51	409*	72*	172*	399*	492*	851*	852*	990*			
l to <3 months	85	531*	103*	341*	513*	745*	957*	1,019*	1,197*			
3 to <6 months	192	520*	89*	312*	530*	739*	880*	929*	1,248*			
6 to <12 months	416	356	43*	94	270	551	772*	948*	1,161*			
1 to <2 years	534	277	36*	88	199	377	627*	781*	1,277*			
2 to <3 years	508	321	43*	105	227	448	722*	911*	1,374*			
3 to <6 years	985	382	53	137	316	515	778	999	1,592*			
6 to <11 years	1,410	511	79	178	413	690	1,072	1,404	2,099*			
ll to <16 years	2,113	637	77	192	436	808	1,535	1,976	3,147			
16 to <18 years	944	702	97	236	515	966	1,571	1,883	3,467			
18 to <21 years	1,086	816	88	216	503	1,065	1,921	2,818	4,106			
≥21 years	7,616	1,227	192	469	991	1,741	2,546	3,092	4,576			
≥65 years	1,974	1,288	325	628	1,137	1,760	2,395	2,960	4,137			
All ages	15,940	1,033	124	333	743	1,474	2,318	2,881	4,312			

- Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- * Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: NHIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

Source: U.S. EPA analysis of NHANES 2003-2006 data.

USEPA Water Intake Origins & Options

- Can calculate an ageweighted value for the mean & each percentile w/this data
- Data includes age range of birth to 78 years
- 5th percentile would be LEAST conservative
- 95th percentile would be MOST conservative

EPA HHC uses 90th percentile of adults >21

Review of HHC Workgroup Meetings

September

- Studied Bioaccumulation factor data in more detail
- Examined EPA spreadsheets on BAF data
- Discussed questions for October meeting

Human Health Criteria EPA Decision Tree / Framework

Figure 3-1 from EPA Methodology

For example, anthracene:

- Nonionic organic chemical
- Mod-high hydrophobicity (K_{ow} > 4)
- High metabolism

For anthracene EPA was not able to locate peer-reviewed BAFs or lab-measured BCFs for all three trophic levels, so EPA used available BCF for TL 2 & TL3 to estimate and derive national BAF for anthracene of 610 L/kg

Water Quality Criteria for the Protection of Human Health (2000)

Figure 3-1. Framework for selection of methods for deriving national BAFs.

The decision tree in many cases led to the use of the octanol-water coefficient, the least preferred method for determining a BAF.

Can you expound on the use of K_{ow} as far as your confidence in its accuracy in determining bioaccumulation, and whether that confidence changes from one type of chemical to another?

Most EPA's	s BAFs were calculated from Log K	ow:
	Calculated from K _{ow}	59
	BCF Method	6
	BAF Method	11
	Copied from Benzo(a)pyrene	6
	Other alternative Method	12
	TOTAL	94

In several instances, data was used from a study for some chemicals, but not for other chemicals tested in the same study. For instance, Freitag et al 1985 was used for 1,2,4-Trichlorobenzene, 2,4-Dichlorophenol, and a few others, but the Freitag paper actually studied several other HHC chemicals for which the study was not used.

Could you give some insight as to how this was done?

```
Table 3: Bioaccumulation of Organic Chemicals in Fish (Golden ide)
Bioaccumulationsfactor: BP, - concentration of chemical in fish Wg/g)*
                                medium conc. of chemical in water (wg/g)
n = 3 days
2.5.4'-Trichlorobiphenyl
                                          2,6-Dichlorobenzonitrile
2.4'-Dichlorobiphenyl
                                          Malonic acid diethyl ester
2,4,6,2'-Tetrachlorobiphenyl
Dieldrin
                                          Acetic acid ethyl ester
Pentachlorobenzene
Aldrin
                                                                             20
2,2'-Dichlorobiphenyl
                                          Monolinuron
Hexachlorobensene
2,4,6,2,4'-Fentachlorobiphenyl
                                          3-Cresol
                                          Dibenz(a,h)anthracene
                                          4-Chloroaniline
Hexachlorocyclopentadiene
                                          Captan
                                          Cortisone acetate
Quintozene
Anthracene
2,6-Di-tert-butylphenol
                                          Ethylene glycol
3,3'-Dichlorobenzidine
                                          2,6-Dichlorobenzamide
                                          Docosane
1,2,4-Trichlorobenzene
                                          Acetic acid (Na-salt)
                                                                            410
Benzo(a) pyrene
                                          Tineb
A-Hexachlorocyclohexane
                                                                            410
                                          Succinic anhydride
Cypermethrin
                                          Perylene
* -Hexachlorocyclobexame
                                          4-Bromobengoic acid
Benz (a) anthracene
2,4,6-Trichloroaniline
                                          p-Phenylenediamine (hydrochloride) +10
2,4,6-Trichlorophenol
                                           (2,4-Dichlorophenoxy) acetic acid 410
Biphenyl
Pentachloropheno!
                                          Benzoic acid
                                                                             410
                                          Methanol
4-Isopropylnitrobenzene
Dodecylbenzenesulphate (Na-salt)
                                          Aniline
                                                                             410
4-tert-Butylphenol
                                          Tristearin
                                                                             €10
Palmitic acid ethyl ester
                                                                             <10
                                          N-Benzyl-N-methylmitrosamine
Diethylene glycol
                                          4-Chlorbenzoic scid
                                                                             <10
2.4-Dichlorophenol
                                          Carbon tetrachloride
                                                                             €10
Trichloroethylene
                                                                             410
                                          Atrazine
2,4-Dichloronitrobensene
                                                                             410
                                                                             410
Benzidine
Chlorobengene
                                          Nitrobensene
                                                                            410
Palmitic acid
                                          Vinyl chloride
Hexadecanol.
                                          2,4-Dichlorobensolc acid
                                                                             410
Dodecane
                                          Thiourea
                                                                             410
Bromobenzene
                                          Ethylenediamine(hydrochloride)
                                                                             <10
1.4-Dichlorobengene
                                          ICM 2100
                                                                             410
4-Nitrophenol
                                                                             420
                                          2-Witropropane
Chlorhexidine
                                          Propylene thioures
Nydroguinone
                                          Ethylene thiogrea
                                                                             410
Phthalic acid bis-
                                           Coumarin
(2-ethylhesyl)ester
```

What are your plans to recalculate these criteria due to recent updates to toxicity research in the IRIS database?

Likewise, as a large majority of the studies used to calculate BAFs were done before 2000. Do you plan to re-examine these criteria with more recent BAF/BCF data?

EPA's data is very old:	Undated	2
	2010-2019	3
	2000-2009	9
	1990-1999	50
	1980-1989	63
	1970-1979	34
	TOTAL	161

There isn't a lot of information on how you moved through the decision tree on the last row of the decision tree, when you decided between using a the BAF method, BCF method, or K_{ow} method to determine a National BAF.

Can you tell us more about how you made those decisions, for instance when you had BCF data but decided to use the K_{ow} anyway?

Chemical Name	Mean Log Kow	BCF from 2002/2003 HHAWQC (L/kg-tissue)	Log Kow Method			BAF Method			BCF Method				Selected Values Used for AWQC Calculations			
			National BAF TL 2 (L/kg- tissue)	National BAF TL 3 (L/kg- tissue)	National BAF TL 4 (L/kg- tissue)	National BAF TL 2 (L/kg- tissue)	National BAF TL 3 (L/kg- tissue)	National BAF TL 4 (L/kg- tissue)	National BAF TL 2 (L/kg- tissue)	National BAF TL 3 (L/kg- tissue)	National BAF TL 4 (L/kg- tissue)	Alternative BCF (L/kg-tissue)	National BAF TL 2 (L/kg- tissue)	National BAF TL 3 (L/kg- tissue)	National BAF TL 4 (L/kg- tissue)	Alternative BCF (Rounded) (L/kg- tissue)
T	+	+	-	+	-	-	-	F	7	-	-	+	~	*	-	7
Acenaphthene	3.98	242	180	250	290				3,500,000	510	3.5	510	ND	ND	ND	510
Acrolein	-0.01	215	1.0	1.0	1.0			-		28			1.0	1.0	1.0	ND
Acrylonitrile	-0.92	30	1.0	1.0	1.0					38			1.0	1.0	1.0	ND
Aldrin	6.5	4670	18,000	310,000	650,000					38,000			18,000	310,000	650,000	ND
alpha-BHC	3.8	130	120	160	190	1,700	1,400	1,500		86	710		1,700	1,400	1,500	ND
alpha-Endosulfan	3.83	270	130	180	200				47	4,700			130	180	200	ND
Anthracene	4.45	30	530	1,200	1,100	11,000			460	800		606.6300355	ND	ND	ND	610
Benzene-Lower CSF	2.13	5.2	3.6	4.5	5.0				4.3		11		3.6	4.5	5.0	ND
Benzene-Upper CSF	2.13	5.2	3.6	4.5	5.0				4.3		11		3.6	4.5	5.0	ND
Benzidine	1.34	87.5	1.4	1.6	1.7			-	700	57			1.4	1.6	1.7	ND
Benzo (a) Anthracene	5.61	30	6,000	55,000	77,000				3,800	21,000		3889.730068	ND	ND	ND	3,900
Benzo (a) Pyrene	6.06	30	12,000	170,000	300,000	13,000			8,900	1,700		3889.730068	ND	ND	ND	3,900
Benzo (b) Fluoranthene	6.04	30	12,000	160,000	290,000			-	2,800	150,000		3889.730068	ND	ND	ND	3,900
Benzo (k) Fluoranthene	6.06	30	12,000	170,000	300,000				69,000			3889.730068	ND	ND	ND	3,900
beta-BHC	3.78	130	110	160	180	-	-			-	130		110	160	180	ND
beta-Endosulfan	3.62	270	80	110	130			-	47	3,700			80	110	130	ND
Bis(Chloromethyl) Ether	-0.38	63	1.0	1.0	1.0					-			1.0	1.0	1.0	ND
Bis(2-Chloroethyl) Ether	1.34	6.9	1.4	1.6	1.7					5.3			1.4	1.6	1.7	ND
*Bis(2-Chloro-1-Methylethyl) Ether	2.48	2.47	6.7	8.8	10					5.0			6.7	8.8	10	ND
Bis(2-Ethylhexyl) Phthalate	7.5	130	25,000	390,000	690,000		680	750	150	9,000		714.1428429	ND	ND	ND	710
Bromoform	2.4	3.75	5.8	7.5	8.5			1	3.2	7.6			5.8	7.5	8.5	ND
Butylbenzyl Phthalate	4.73	414	980	2,900	2,600		15,000	24,000		3.3		18973.66596	ND	ND	ND	19,000
Carbon Tetrachloride	2.64	18.75	9.3	12	14					5.0	44		9.3	12	14	ND
Chlordane	5.54	14100	5,300	44,000	60,000			-		67,000			5,300	44,000	60,000	ND
Chlorobenzene	2.84	10.3	14	19	22		390	120	1,400	8.8			14	19	22	ND

Additional questions for EPA

Further discussion on bioaccumulation factors and toxicity data

HHC Workgroup Goals

a work in progress

- 1. Reasonable standards approvable by WV Legislature & EPA
- 2. Protective regulations protect West Virginians
- 3. Learn broaden horizons, gain better understanding
- 4. Consensus agree on what to propose in 2021

November meeting

What would you like us to discuss at the November meeting?

Does Wednesday Nov 18 at 9AM work for everyone?

