
CHAPTER 13

DIPTERA (Aquatic & Semiaquatic True Flies)

Citation:

Bouchard, R.W., Jr. 2004. Guide to aquatic macroinvertebrates of the Upper Midwest. Water Resources Center, University of Minnesota, St. Paul, MN. 208 pp.

ORDER DIPTERA

Aquatic & Semiaquatic True Flies

There are more species of aquatic Diptera than there are of any other order despite the fact that most of the order is terrestrial. Diptera considered aquatic have aquatic larvae and pupae with terrestrial adults. Many other aquatic insects are also commonly referred to as "flies" (e.g., mayflies, dragonflies, stoneflies, caddisflies, alderflies, fishflies), but these taxa are not true flies as they do not belong to the order Diptera. When referring to true flies or Diptera with their common names, the word "fly" is separate (e.g., crane fly, black fly, moth fly dance fly, flower fly). In contrast, common names for non-dipteran taxa are one word. The true flies are extremely important in aquatic food webs and often are the most diverse and abundant macroinvertebrate taxon collected in many freshwater habitats. Diptera inhabit a wide range of habitats and some taxa are extremely tolerant and occur in heavily polluted water bodies. Some true flies can be a nuisance due to their blood feeding behaviors. Only a key to the larvae is provided in this guide.

Diptera Morphology (Larvae)

Most Diptera larvae are maggot-like or worm-like (Fig. 13.1). Some possess an obvious head capsule, but this structure is either reduced or obscured in many other Dipteran taxa. In all dipteran larvae, segmented legs and wing pads are absent from the thorax.

Because of the large diversity of aquatic Diptera and the lack of easily observable and consistent characters in their larvae, the identification of larvae can be difficult. Common diagnostic characters for aquatic Dipteran larvae include the number and location of prolegs, shape of the terminal processes, and head condition (e.g., well-defined or reduced head capsule).

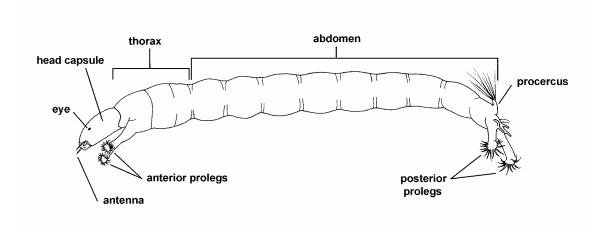


Figure 13.1: Lateral view of dipteran larva.

Key to Diptera Families (Larvae)

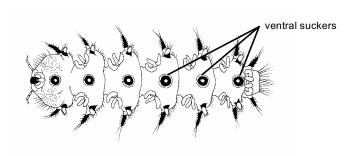


Figure 13.2: *Philorus californicus* (Blephariceridae) larva, Ventral View.

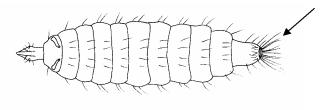


Figure 13.3: *Euparyphus* sp. (Stratiomyidae) larva, Dorsal View.

3(2'). Head capsule fully visible and completely separated from thorax (Figs. 13.4, 13.5)..........4

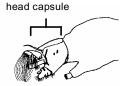


Figure 13.4: Anterior end of *Simulium* venustum (Simuliidae) larva, Lateral View.

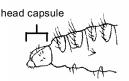


Figure 13.5: Anterior end of *Pericoma* sp. (Psychodidae) larva, Lateral View.

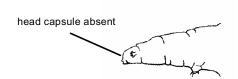


Figure 13.6: Anterior end of *Ephydra* sp. (Ephydridae) larva, Lateral View.

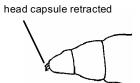


Figure 13.7: Anterior end of *Tipula* abdominalis (Tipulidae) larva, Lateral View.

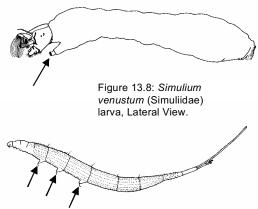
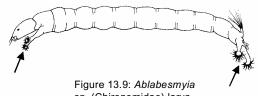



Figure 13.10: *Bittacomorpha clavipes* (Ptychopteridae) larva, Lateral View.

sp. (Chironomidae) larva, Lateral View.

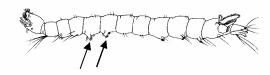


Figure 13.11: *Dixella* sp. (Dixidae) larva, Lateral View.

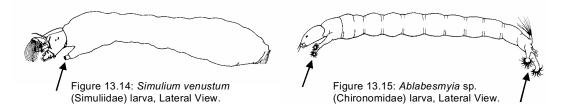
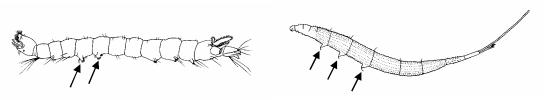
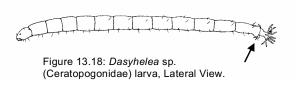



Figure 13.12: *Chaoborus* sp. (Chaoboridae) larva, Lateral View.

Figure 13.13: *Pericoma* sp. (Psychodidae) larva, Lateral View.

5(4). Prolegs present on prothorax (Fig. 13.14), at terminal end of body, or both (Fig. 13.15)...6

5'. Prolegs absent from prothorax and terminal end of body; prolegs only present on

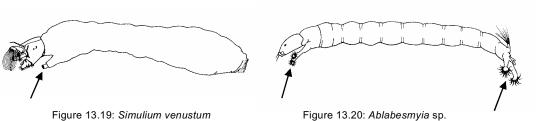
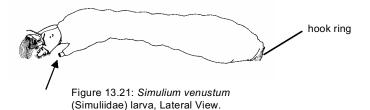
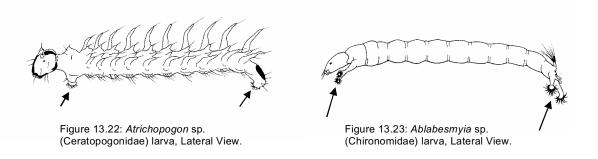

Figure 13.16: Dixella sp. (Dixidae) larva, Lateral View.

Figure 13.17: Bittacomorpha clavipes (Ptychopteridae) larva, Lateral View.

6(5). Prolegs only at terminal end of body (absent from prothorax) (Fig. 13.18).....



6'. Prolegs either present only on prothorax (Fig. 13.19) or on both prothorax and terminal



(Simuliidae) larva, Lateral View.

(Chironomidae) Iarva, Lateral View.

7'. Prolegs present on both prothorax and terminal end of body (Figs. 13.22, 13.23); posterior third of abdomen not swollen (Figs. 13.22, 13.23); abdomen not terminating in a single ring of hooks although rings of hooks may be present at the end of prolegs.......8

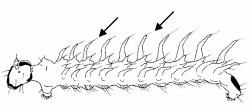


Figure 13..24: *Atrichopogon* sp. (Ceratopogonidae) larva, Lateral View.

Figure 13.25: *Ablabesmyia* sp. (Chironomidae) larva, Lateral View.

Figure 13.26: *Chironomus tentans* (Chironomidae) larva, Lateral View.

Figure 13.27: *Dixella* sp. (Dixidae) larva, Lateral View.

Figure 13.28: Apex of abdomen of *Dixa* sp. (Dixidae) larva, Lateral View.

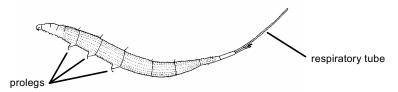
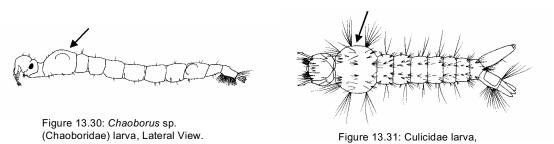



Figure 13.29: *Bittacomorpha clavipes* (Ptychopteridae) larva, Lateral View.

Dorsal View.

Figure 13.32: Head of *Chaoborus* punctipennis (Chaoboridae) larva, Lateral View.

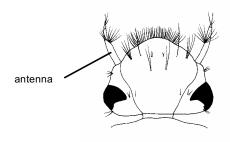


Figure 13.33: Head of Aedes stimulans (Culicidae) larva, Dorsal View.

Figure 13.34: *Ptychoptera* sp. (Ptychopteridae) larva, Lateral View.

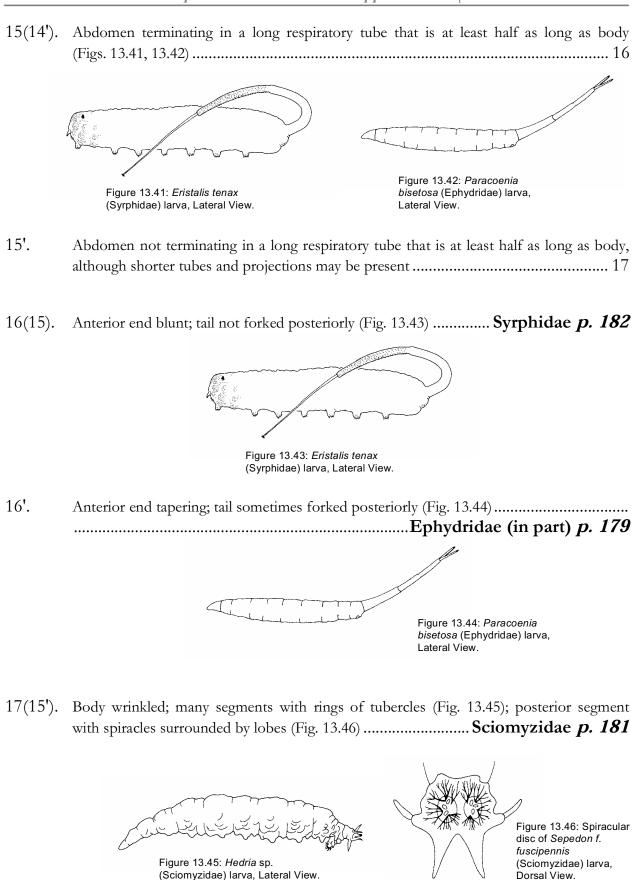

Figure 13.35: *Pericoma* sp. (Psychodidae) larva, Lateral View.

Figure 13.36: *Bezzia* sp. (Ceratopogonidae) larva, Lateral View.

	Psychodidae p. 180
	Figure 13.37: Psychodidae larva, Lateral View.
13'.	Body segments not secondarily divided (Fig. 13.38); body white or off-white
	Figure 13.38: <i>Bezzia</i> sp. (Ceratopogonidae) larva, Lateral View.
14(3').	Much of rounded head capsule present (sometimes reduced to only a few rods) (Fig. 13.39); mandibles moving against each other on a horizontal plane (Fig. 13.39) – note: to see head the sides of the thorax must often be cut to reveal retracted head
	mandible Figure 13.39: Head capsule of
	Dicranota sp. (Tipulidae) larva, Ventral View.
14'.	Head capsule lacking or much reduced (Fig. 13.40); mandibles moving parallel to each other on a vertical plane (Fig. 13.40)

Figure 13.40: Head capsule of *Tabanus reinwardtii* (Tabanidae) larva, Lateral View.

17'.

Not as above.....

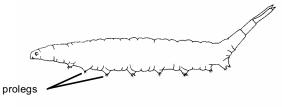


Figure 13.47: *Ephydra* sp. (Ephydridae) larva, Lateral View.

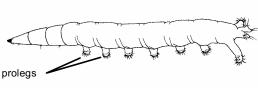


Figure 13.48: *Hemerodromia* sp. (Empididae) larva, Lateral View.

18'. Distinct prolegs absent (welts covered in setae sometimes present) (Figs. 13.49, 13.50). 22

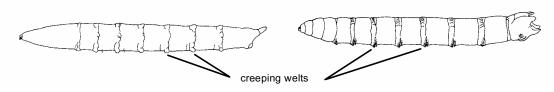


Figure 13.49: *Tabanus reinwardtii* (Tabanidae) larva, Lateral View.

Figure 13.50: *Rhaphium campestre* (Dolichopodidae) larva, Lateral View.

Figure 13.51: Athericidae larva, Lateral View.

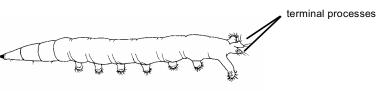
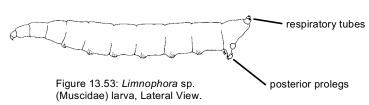
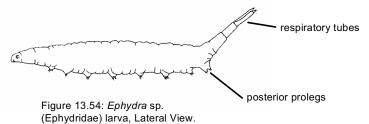




Figure 13.52: *Hemerodromia* sp. (Empididae) larva, Lateral View.

21'. Abdomen terminating in a variety of lobes or processes; posterior prolegs absent or prolegs shorter than respiratory tubes (Fig. 13.54).......Ephydridae (in part) p. 179

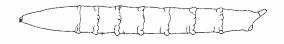


Figure 13.55: *Tabanus reinwardtii* (Tabanidae) larva, Lateral View.

n terminating in 4 lobes (Fig. 13.56); posterior segments bare	•••••
Dolichopodidae	
•	•

Figure 13.56: *Rhaphium campestre* (Dolichopodidae) larva, Lateral View.

Figure 13.57: *Scatella hawaiiensis* (Ephydridae) larva, Lateral View.

Diptera (Pupae)Some examples of aquatic Diptera pupae:

Figure 13.58: *Procladius* sp. (Chironomidae) pupa, Lateral View.

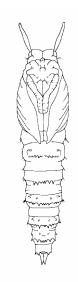


Figure 13.59: Psychoda alternata (Psychodidae) pupa, Ventral View.

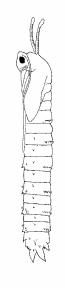


Figure 13.60: Tipula sp. (Tipulidae) pupa, Ventral View.

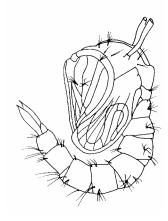


Figure 13.61: Culicidae pupa, Lateral View.

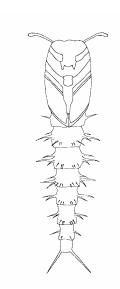


Figure 13.62: Probezzia slabra (Ceratopogonidae) pupa, Ventral View.

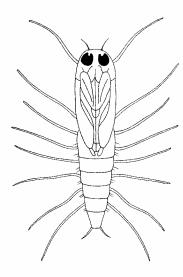


Figure 13.63: Empididae pupa, Ventral View.

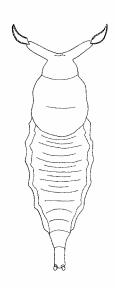


Figure 13.64: Brachydeutera prob. *argentata* (Ephydridae) pupa, Ventral View.

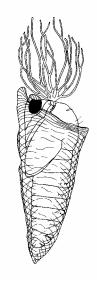


Figure 13.65: Simulium vittatum (Simuliidae) pupa within cocoon, Lateral View.

<u>Diptera Family Descriptions (Larvae)</u>

Athericidae

Common Name: Aquatic Snipe Flies

Feeding Group: **Predators Tolerance Value:** 2 (Low)

Habitat: Athericid larvae are most

commonly found under rocks

in the riffles of streams.

Figure 13.66: Athericidae larva,

Lateral View.

Size: Medium (10-18 mm)

Characteristics: Body elongate; head reduced and withdrawn into the thorax although some

> parts may be visible; mandibles moving parallel to each other on a vertical plane; a pair of prolegs present on abdominal segments 1-7 and a single proleg on abdominal segment 8; abdomen terminates in two pointed tails fringed with

hairs.

Notes: Athericid larvae are piercer predators that prey on aquatic insects such as

chironomids and Ephemeroptera. Egg-laying in this family is curious. The female finds a twig over-hanging a stream and lays an egg mass. She then stays with the eggs until she dies. Other females are attracted to the same spot and a clump of dead flies and egg masses eventually accumulates. When the larvae hatch they must crawl through the mass of fly carcasses in order to drop into

the stream below.

Blephariceridae

Common Name: Net-Winged Midges

Feeding Group: Scrapers **Tolerance Value:** 0 (Low)

Habitat: Blepharicerid larvae are restricted to cool, fast-

> flowing streams and waterfalls. They are found

attached to rocks in areas of fast flow.

Size: Small to medium (5-12 mm)

Head fused with thorax and first abdominal segment; **Characteristics:**

> mandibles moving against each other on a horizontal plane; 6 abdominal segments with deep constrictions between segments; ventral suckers on first 6

segments; gill tufts present ventrally.

Notes: The 6 ventral suckers and the flattened body shape

allow these larvae to remain attached to the substrate in swiftly flowing waters. They "inchworm" slowly across rocks grazing on diatoms, microbes, and other

detritus attached to the rocks.

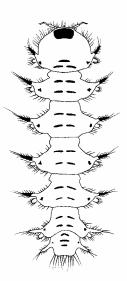


Figure 13.67: Philorus californicus (Blephariceridae) larva, Ventral View

Ceratopogonidae

Common Name: Biting Midges, No-See-Ums, Punkies

Feeding Group: Predators
Tolerance Value: 6 (Moderate)

Habitat: Ceratopogonid larvae are generally

found in standing or slow moving waters in lakes, ponds, marshes, and streams. They usually occur in

soft sediments or in algal growths.

Size: Small (2-15 mm)

Characteristics: Superficial characteristics vary

considerably within this group. Distinct sclerotized head capsule present; mandibles moving against each other on a horizontal plane;

prolegs present or absent.

Notes: Some ceratopogonid larvae inhabit

semiaquatic areas such as moist

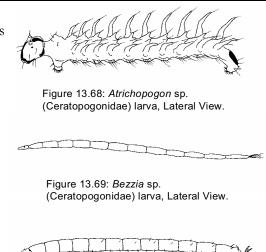


Figure 13.70: *Dasyhelea* sp. (Ceratopogonidae) larva, Lateral View.

sand or mud. Common species are snake-like and are similar to chironomids except that most ceratopogonids lack prolegs. The adults of these flies are often considered pests because the females of some species feed on the blood of mammals, birds, reptiles, and amphibians. Some species feed on the blood of other insects, while others are predators that capture insects and suck fluids from their prey. They are particularly troublesome to humans because of their small size which allows them to pass through window screens and because their bites are much more painful than their size would suggest.

Chaoboridae

Common Name: Phantom Midges

Feeding Group: Predators **Tolerance Value:** 8 (High)

Habitat: Chaoborid larvae most commonly occur in standing water in lakes, ponds, and

marshes. Rarely they are found in the calm water of streams.

Size: Small to medium (6-12 mm)

Characteristics: Head sclerotized, rounded, and clearly separate from the thorax; mandibles

moving against each other on a horizontal plane; thoracic segments fused and swollen, wider than abdomen; prolegs absent; antennae terminating in long

setae; terminal segment with ventral brush of setae.

Notes: Chaoborid larvae resemble mosquito larvae. The most common forms of

chaoborids are found in the water columns of lakes and ponds and are known for their vertical migrations. They migrate in order to follow their prey and to obtain air. These larvae have two air sacs that provide buoyancy and an air

source as they move through the water column.

Figure 13.71: *Chaoborus* sp. (Chaoboridae) larva, Lateral View.

Chironomidae

Common Name: Non-Biting Midges

Feeding Group: Collector/Gatherers (also Scrapers, Filter/Collectors, Predators)

Tolerance Value: 6 (Moderate) - pale forms; 8 (High) - blood red

Habitat: Chironomids are found in every aquatic habitat from small seeps to large rivers

and from temporary pools to deep lakes. They occur in soft sediment, on rocks,

in and around vegetation, in snags, and just about any other habitat.

Size: Small to large (2-30 mm)

Characteristics: Head sclerotized, rounded, and clearly separate from the thorax; body elongate

and worm-like; mandibles moving against each other on a horizontal plane; two pairs of ventral prolegs (one on prothorax and one at the terminal end); prolegs

terminate in a series of hooks.

Notes: Chironomids are the most abundant and diverse group of aquatic insects. They

are found in almost any water body and it is common for chironomids to comprise more than 50% of the species richness. Some kinds of chironomids are blood red (this color is lost when the specimen is preserved). The red coloration comes from hemoglobin that allows the larvae to store oxygen and survive in situations with low dissolved oxygen. Chironomids are an important

food source for insects, fishes, and birds.

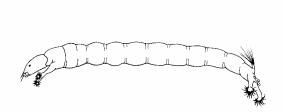


Figure 13.72:

Ablabesmyia sp.
(Chironomidae) larva,
Lateral View.

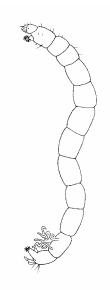


Figure 13.73: Chironomus tentans (Chironomidae) larva, Lateral View.

Culicidae

Common Name: Mosquitoes

Feeding Group: Collector/Filterers, Collector/Gatherers

Tolerance Value: 8 (High)

Habitat: Mosquito larvae occur in standing or still water of

lakes, ponds, marshes, temporary pools, and

streams. The larvae are planktonic.

Size: Small to medium (4-18 mm)

Characteristics: Head sclerotized, rounded, and clearly separate from

the thorax; labrum with brushes of setae; mandibles moving against each other on a horizontal plane; thoracic segments fused and swollen, wider than abdomen; prolegs absent; eighth segment usually

bearing a respiratory siphon.

Notes: Most mosquito larvae breathe atmospheric oxygen

by using their respiratory siphon. Female mosquitoes require a blood meal for egg development, which makes them a nuisance. The short life cycle (7-10 days for many species) and the ability of some species to utilize temporary pools, puddles, and other sources of standing water make

mosquitoes particularly problematic.

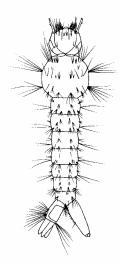


Figure 13.74: Culicidae larva, Dorsal View.

Dixidae

Common Name: Dixid Midges, Meniscus Midges

Feeding Group: Collector/Gatherers

Tolerance Value: 1 (Low)

Habitat: Dixid larvae occur in the calm waters of marshes, ponds, and streams. They are

usually found in vegetated margins.

Size: Small to large (3-25 mm)

Characteristics: Head sclerotized, rounded, and clearly separate from the thorax; mandibles

moving against each other on a horizontal plane; prolegs terminating in hooks on abdominal segments 1-2; abdomen terminating in two lobes fringed with

setae.

Notes: Dixid midges can be observed at the surface of the water in a U shape with their

head and terminal end of their abdomens in the water (or terminal end on the surface) and the middle of the body protruding from the water. Dixids are generally restricted to clean waters and in some cases they can become very

abundant.

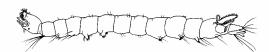


Figure 13.75: *Dixella* sp. (Dixidae) larva, Lateral View.

Dolichopodidae

Common Name: Long-Legged Flies

Feeding Group: Predators **Tolerance Value:** 4 (Moderate)

Habitat: Dolichopodid larvae occur in standing or slow moving water in streams, ponds,

and marshes. They are usually found at the margins in mud or decaying

vegetable matter or in submerged soft sediments.

Size: Small to Medium (6-22 mm)

Characteristics: Body cylindrical with anterior end tapering and posterior end blunt; head

reduced and withdrawn into the thorax; mandibles moving parallel to each other on a vertical plane; abdominal segments 1-7 with ventral creeping welts;

abdomen terminating in 4 lobes (dorsal lobes bearing spiracles).

Notes: Adult dolichopodids have interesting courtship rituals involving complicated

dance patterns. The adults, often observed on vegetation near water bodies, are

metallic green or blue.

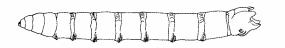


Figure 13.76: *Rhaphium campestre* (Dolichopodidae) larva, Lateral View.

Empididae

Common Name: Dance Flies Feeding Group: Predators Tolerance Value: 6 (Moderate)

Habitat: Dance fly larvae are found in a

variety of habitats such as streams, ponds, and marshes. They can be found in the swift or slow-moving sections of streams or at the margins of

ponds and marshes.

Size: Small to medium (3-20 mm)

Characteristics: Body elongate; head reduced and withdrawn into the thorax although some

parts are usually visible; mandibles moving parallel to each other on a vertical plane. In the most common species: prolegs present on abdominal segments 1-8 or 2-8 with the prolegs on abdominal segment 8 longer than the others; prolegs bearing hooks; abdomen terminating in 1-4 lobes usually bearing setae. In the less common species: prolegs absent but welts present on abdominal

Figure 13.77: Hemerodromia

sp. (Empididae) larva, Lateral View

segments; terminal end blunt.

Notes: The larvae of this group are not very well studied. The adults get their common

name from their twisting and turning movements while swarming. Many species have interesting mating rituals where the male will present a dead insect to a female in order to entice her to mate. Adults and larvae are predators, often feeding on insects such as mosquitoes and black flies, making them a beneficial

group.

Ephydridae

Common Name: Shore Flies, Brine Flies

Feeding Group: Collector/Gatherers (also Shredders, Scrapers, Predators)

Tolerance Value: 6 (Moderate)

Habitat: Ephydrid larvae occur at the

margins of ponds, marshes, and streams. They are usually found in detrital mats, algal mats, and

mud.

Size: Small to medium (1-14 mm)

Characteristics: The superficial characteristics of

> the larvae of this family are variable: head reduced withdrawn into the thorax: mandibles moving parallel to each other on a vertical plane; absent: prolegs present or posterior end variable sometimes terminating in long respiratory tube or a forked

respiratory tube.

Notes: Some species are extremely

tolerant and exist in situations such as highly saline lakes and

petroleum pools.

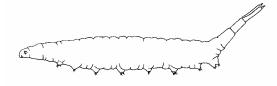


Figure 13.78: Ephydra sp. (Ephydridae) larva, Lateral View.

Figure 13.79: Scatella hawaiiensis (Ephydridae) larva, Lateral View.

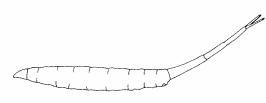


Figure 13.80: Paracoenia bisetosa (Ephydridae) larva, Lateral View.

Muscidae

Common Name: House Flies, Stable Flies, Green Bottle Flies

Feeding Group: **Predators Tolerance Value:** 6 (Moderate)

Habitat: Larvae of aquatic muscid

species can be found in running and standing waters in streams, ponds, and marshes. They are generally collected in decaying organic matter and algal mats, presumably where

they find their prev.

Small to medium (6-20 mm)

Figure 13.81: Limnophora sp. (Muscidae) larva, Lateral View.

Size:

Body shape peg-like - anterior end tapering and posterior end blunt; head Characteristics:

reduced and withdrawn into the thorax; mandibles moving parallel to each other on a vertical plane; welts bearing spinules present on abdominal segments; prolegs present ventrally on terminal segment; abdomen terminating in a pair of

short respiratory tubes.

Notes: The vast majority of muscid larvae are found in terrestrial situations such as

> dung, carrion, fungi, and rotting vegetable matter. However, a few species of Muscidae are truly aquatic and prey primarily on other Diptera. The aquatic

larvae of this group are not well studied.

Psychodidae

Common Name: Moth Flies

Feeding Group: Collector/Gatherers

Tolerance Value: 10 (High)

Habitat: Psychodid larvae occur in moist

sediments and detritus at the edge of streams, ponds, and marshes. Some species are truly aquatic and are found in

streams.

Size: Small (3-6 mm)

Characteristics: Head sclerotized, rounded, and clearly separate from the thorax; mandibles

moving against each other on a horizontal plane; body cylindrical; body segments with 2-3 secondary divisions (annuli) often bearing dorsal sclerotized

Figure 13.82: *Pericoma* sp. (Psychodidae) larva, Lateral View.

plates; prolegs absent.

Notes: Some species of moth flies are associated with sewage treatment facilities and

heavily enriched streams. The adults of some psychodid species are commonly seen in bathrooms because the larvae occur in household drains feeding on

organic matter.

Ptychopteridae

Common Name: Phantom Crane Flies **Feeding Group:** Collector/Gatherers

Tolerance Value: 7 (High)

Habitat: Ptychopterid larvae are found in muddy areas of marshes, seeps, and streams

where a lot of organic matter is present.

Size: Medium to large (10-25 mm) – not including extended breathing tube

Characteristics: Head sclerotized, rounded, and clearly separate from the thorax; mandibles

moving against each other on a horizontal plane; prolegs on abdominal segments 1-3; prolegs terminate in slender claw; usually with numerous warts

bearing hairs on segments; abdomen terminating in a long respiratory tube.

Notes: Ptychopterid larvae burrow into soft sediments and breathe either though their

integument or by connecting to the atmosphere using their long breathing tubes. The adults get their name from their habit of flying with very little movement of

their wings.

Figure 13.83: *Ptychoptera* sp. (Ptychopteridae) larva, Lateral View.

Figure 13.84: *Bittacomorpha clavipes* (Ptychopteridae) larva, Lateral View.

Sciomyzidae

Common Name: Snail-Killing Flies, Marsh Flies Feeding Group: Predators (or snail parasites)

Tolerance Value: 6 (Moderate)

Habitat: Sciomyzids most commonly occur in ponds, marshes, and streams where their

prev are found.

Size: Small to medium (3-15 mm)

Body wrinkled; head reduced and withdrawn into the thorax; mandibles moving **Characteristics:**

parallel to each other on a vertical plane; many segments with rings of tubercles;

posterior segment with spiracles surrounded by lobes.

Notes: Sciomyzid larvae most commonly parasitize pulmonate snails.



Figure 13.85: Hedria sp. (Sciomyzidae) larva, Lateral View.

Simuliidae

Common Name: Black Flies, Buffalo Gnats

Feeding Group: Collector/Filterers **Tolerance Value:** 6 (Moderate)

Habitat: Black fly larvae occur in streams

and rivers in areas of moderate to fast current. They are found attached rocks. to logs, vegetation, or any other solid

substrate in the current.

Size: Small to medium (3-15 mm)

Characteristics: Head sclerotized, rounded, and clearly separate from thorax; pair of labral fans

> ("mouthbrushes") usually present; mandibles moving against each other on a horizontal plane; proleg present ventrally on prothorax; posterior 1/3 of

abdomen swollen; abdomen terminates in a ring of hooks.

Notes: Black flies have a ring of hooks at the terminal end of the abdomen, which

> enables them to adhere to the substrate and avoid being swept away in the current. At a glance these hooks resemble a suction disc. The hooks are used to cling to a patch of silk, which the larva attaches to the substrate. Black flies use a brush-like structure to filter fine organic matter from the water. These larvae are common in streams of the Upper Midwest and in some situations can reach huge numbers, covering rocks and other substrate in flowing waters. Most adult females are blood feeders on mammals and can be a nuisance in

regions where they are extremely abundant.

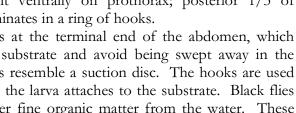


Figure 13.86: Simulium venustum

(Simuliidae) larva, Lateral View.

Chapter 13 | DIPTERA

Stratiomyidae

Common Name: Soldier Flies

Feeding Group: Collector/Gatherers

Tolerance Value: 8 (High)

Habitat: The larvae of stratiomyids commonly occur at the

water surface, in algal mats, and on the surface of mud or detritus at the edges of ponds, marshes, and

streams.

Size: Small to large (5-35 mm)

Characteristics: Body flattened dorsally; integument leathery; most

of reduced head capsule visible; mandibles moving parallel to each other on a vertical plane; thorax

broader than head; prolegs absent.

Notes: Soldier flies have spiracles at the end of the

abdomen that are used for breathing. Many species have a fringe of water-repelling hairs surrounding the spiracles that allow the larva to maintain contact with the atmosphere when the body is submerged.

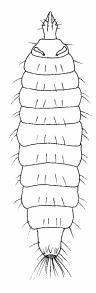


Figure 13.87: *Euparyphus* sp. (Stratiomyidae) larva, Dorsal View.

Syrphidae

Common Name: Rat-Tailed Maggots, Flower Flies

Feeding Group: Collector/Gatherers

Tolerance Value: 10 (High)

Habitat: Syrphid larvae can be found in

shallow water at the margins of ponds, marshes, and streams in areas where there is a lot of decaying organic matter. They are tolerant of low levels of dissolved oxygen so they are sometimes associated with sewage discharge and heavily

enriched waters.

Figure 13.88: *Eristalis tenax* (Syrphidae) larva, Lateral View.

Size: Small to medium (4-16 mm) – not including extended breathing tube

Characteristics: Head blunt; head reduced and withdrawn into the thorax; mandibles moving

parallel to each other on a vertical plane; 7 prolegs present (1 proleg on thorax and prolegs on abdominal segments 1-6); abdomen terminating in a long

respiratory tube that is at least half as long as body.

Notes: The majority of species in this family have terrestrial larvae. The larvae are

sometimes called rat-tailed maggots because of their long respiratory tube. This tube allows them to exist in water with low levels of dissolved oxygen by giving them direct access to atmospheric oxygen. Because of this tolerance they are

often a good indication of organic pollution.

Tabanidae

Common Name: Horse Flies, Deer Flies

Feeding Group: Predators
Tolerance Value: 6 (Moderate)

Habitat: Tabanid larvae commonly

occur in ponds, marshes, and streams. They are usually found burrowing in sediment in areas of standing or slow flow, but some species occur in sand or gravel in the swift portions

of streams.

Size: Medium to large (15-60 mm)

Characteristics: Body spindle-shaped with both ends tapering; integument is tough with

longitudinal striations; head reduced and withdrawn into the thorax; mandibles moving parallel to each other on a vertical plane; prolegs absent; creeping welts with small hooks present on abdominal segments 1-7 (3-4 welts present on each

segment).

Notes: Adult female tabanids are blood sucking and can be a nuisance to humans

because of their painful bite. The larvae attack their prey using their hook-like mandibles. Tabanid larvae can give a painful bite when handled carelessly.

Tipulidae

Common Name: Crane Flies

Feeding Group: Shredders (also Predators and

Collector/Gatherers)

Tolerance Value: 3 (Low)

Habitat: Tipulid larvae can be found in a

variety of habitats such as streams, ponds, and marshes. They can be found under rocks, in sand, snags, leaf packs, and

algal mats.

Size: Small to large (3-60 mm)

Characteristics: Much of rounded head capsule present or reduced to only a few rods; head

capsule completely or partially retracted into thorax; mandibles moving against each other on a horizontal plane; usually with ventral welts; terminal segment usually with two spiracles; spiracular disc usually surrounded by lobes or

projections of varying numbers or shapes.

Notes: Some of the large larvae are very common in leaf packs and are sometimes

called "leatherjackets" because of their thick integument. These larvae are very important contributors to stream ecosystems because they break leaves into smaller pieces and make them accessible to other organisms. Adult crane flies

look like large mosquitoes, but these insects do not bite.

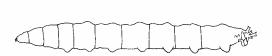


Figure 13.89: *Tabanus reinwardtii* (Tabanidae) larva, Lateral View.

Figure 13.90: *Tipula abdominalis* (Tipulidae) larva, Lateral View.