

(1) Determine the stream-reach boundary. (2) Near the lower end of the reach (in the deepest portion of the run), collect water samples and analyze using the chemical tests you have available. You may use your collection container to observe watercolor and clarity and to determine water odors. (3) Measure the width-depth, velocity and estimate the water level. (4) If you use a two-pole kick-net, collect a minimum of three benthic macroinvertebrate samples from the best riffle or runs within your stream reach. Use the table on page five to record information about your collections. (5) Evaluate the physical and habitat conditions; record information about known land use activities. (6) Sketch your reach or submit photographs and add any other comments that you feel are important. Note: A WVDNR Scientific Collection Permit is required for all benthic collections.

Stream name							Survey da	ate	
Watershed							on code		
Latitude	L	ongitude _		Dire	ection	s to site _			
Survey completed by									
Current weather con-									
Past weather condition	ons (last 3-da	.ys)							
NA 'I'				Email		DI			
address						Pnone	number		
WATER CHEMISTRY: Us necessary.	se the spaces	below to red	cord the result	s of your water	chem	istry analy	sis; attach	additional sl	neets if
	Result	units		Result	unit	5		Result	units
Temperature (C/F)		С	onductivity			Α	lkalinity		
Dissolved oxygen			Nitrates				Iron		
рН			Turbidity			Fed	cal/E-coli		
Additional tests (des	cribe and rec	ord results)	-						
PHYSICAL CONDITIONS The extra lines are p sure to indicate thes dominant condition. Water slavity	rovided to wr e on your sur If the conditi	ite in any ad vey (check a on you obse	ditional comm Il that apply). I	nents. You may If multiple cond ed, describe it i	see m litions n the	ore than o are obser comment s	one type of ved, alway section.	f condition; if	so, be
Water clarity	wa	tercolor		Water/sedime	Mate			e ioam	
Clear		None		None		J. Journe		None	
Murky		Brown		Fishy				Slight	
Milky		Black		Musky			М	oderate	
Muddy		Orange/red		Rotten egg				High	
Other (describe)		Gray/White		Sewage					
		Green		Chemical					
Algae color	Alg	gae abundar	nce	Algae growt	h hab	it	Stream	bed color	
Light green		None		Even coat	ting		E	Brown	
Dark green		Scattered		Hairy	_			Black	
Brown		Moderate		Matte	t			Green	
Other (describe)		Heavy		Floatin	g			ite/gray	
							Ora	inge/red	
Eatimata	and indicate t	ha naraanta	no of vois ===	ch that is shed		> 80	80-60	60-40	< 40
		ne percenta	ge of your rea	ch that is shade	Eu.	Excellent	Good	Marginal	Poor
Physical condition co	mments:								

WIDTH AND DEPTH: Record the	wetted width and depth of the channel's features (riffles, runs or pools). Choose two or	more
features to measure. Record	the average depth from a minimum of four measure-ments (one of these should be from	the
deepest part of the feature).	The width should be measured from the widest section of the feature.	

1.	Riffle	Wetted width (feet)	Depth (feet)
2.	Run	Wetted width (feet)	Depth (feet)
3.	Pool	Wetted width (feet)	Depth (feet)

DISCHARGE

Determine the discharge by using a flow meter (if available) or other methods such as the FLOAT or a VELOCITY HEAD ROD (VHR). Discharge should be measured from a run (area of the channel with fast moving water with no breaks in the surface such as protruding rocks). The more measurements collected the more accurate your discharge results will be. To convert inches into feet, divide by 12. For example, if your depth measurement was 6-inches the result in feet would be 0.5. Indicate the methods chosen to measure the discharge and use the tables to record your results. Use the table on the next page to record your measurements.

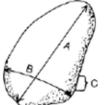
Discharge method i	used		Water Level			
Float	VHR	Flow meter	Low	Normal	High	Dry
Channel width _		_ feet		Use the ta	ble to record yo	ur velocity data

Distance (ft)	Depth (ft)	Velocity (ft/sec)	VHR (Rise-inches)	Float (sec)	Discharge (cfs)
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

(CSA = Average Depth x Width)	,
Discharge = CSA x Velocity =	x
=	cfs (ft³/sec)
If you use a float record your disseconds, it took to travel the dis	stance below and the number of stance in the column indicated.

itise (it)	velocity	ilise (il)	Velocity
1/4	1.2	3 1/4	4.2
1/2	1.6	3 ½	4.3
3/4	2.0	3 3/4	4.5
1	2.3	4	4.6
1 1/4	2.6	4 1/4	4.8
1 1/2	2.8	4 1/2	4.9
1 3/4	3.1	4 3/4	5.0
2	3.3	5	5.2
2 1/4	3.5	5 1/4	5.3
2 ½	3.7	5 ½	5.4
2 3/4	3.8	5 3/4	5.5
3	4.0	6	5.7
	,		

VHR Velocity = $8 \times \sqrt{R}$, where R is rise in feet.


Float distance (feet)

CHANNEL PROFILES: Width and depth measurements can be used to create a cross section profile within your reach. Choose a location in your reach across one of the channel types above. Stretch a tape from bank to bank and anchor it at both ends. Move from left to right facing in an upstream direction; measure the distance from the stream bottom to the top of the tape at selected intervals (i.e., every foot). Record your measurements in the table below. The table provides enough spaces for 20 measurements; if more are necessary you can create your own table on a separate piece of paper. Your tape measure will probably not start at zero so make sure to record the actual position of the tape as you measure across the channel.

Width inte	rvals								
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
Depth me	asurements								
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

PEBBLE COUNT: Collect a minimum of 100-particles from your reach using a Zigzag method, percent habitat method or specific transects (e.g., every 10-meter). If you do not complete a pebble count, **ALWAYS ESTIMATE** streambed composition from the riffles/runs chose for your macroinvertebrate sample collections.

	Size Classes (Intermediate axis in millimeters)													
Indicate your method	Silt/clay	Sand	Fine Gravel	Coarse	Cobble	Boulder	Bedrock							
from the choices below.	< 0.06	0.06 – 2	2 – 24	Gravel 25 – 64	65 – 255	256 – 1096	> 1096							
Zigzag														
% Habitat														
10-m Transects														
Woody Debris														
Includes sticks, roots,														
leaves etc.														
Totals [Dalala as			stream and one	an abana The							

- (A) Long axis (Length)
- (B) Intermediate axis (Width)
- (C) Short axis (Height)

Pebble counts require two people, one in the stream and one on shore. The person in the stream slowly walks upstream from bank to bank using one of the methods above. After each step, the person reaches down without looking, picks up the first particle touched, and measures the intermediate axis with a ruler. The on-shore partner records the measurement. The process continues until 100 pebbles have been measured or the reach has been walked.

HABITAT CONDITIONS: Score each habitat condition using the scales provided. Add all the scores to determine your overall habitat score and integrity rating. Feel free to describe additional features that you feel are important.

Sediment deposition	dep 209	Little or no formation of depositional features; < 20% of the reach affected.					depositional features;					ositio	amounal fea	atures	;		ositio	ounts n; > 6 affect	0% o	f
Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Embeddedness should be evaluated in RIFFLES prior to or during your macroinvertebrate collections.

Embeddedness	surro spac grav	es be			he	10-	30% veen	of the the gr	surrou space avel, ulders	es	30-6 betv	60% veen	of the	surrou e space ravel, ulders	es	surr the grav	space	ment s > 60 s betw	ween	
Score	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

The last three conditions are assessed on both sides of the channel. The LEFT and RIGHT sides are determined by looking downstream.

Bank vege protecti		covered by vegetation (trees, shi herbs) rep disruption	n; all levels rubs and presented; n from grazi tc. minimal I plants	ing,	cove vege plan not som vege 50%	90% of the ered by natication; one its may be its well represe disruption etation evides the ight reight reight.	ural le level of missing or ented; n of ent; > tential	covered by vegetation bare soil and close vegetation 50% of the	of the bank by natural n; patches of may be pre ly cropped n is commone potentia ghts remain	of esent on; <	cove vege high been pote	0% of the bered by natetation; dispersively of the control of the	ural ruption is n has or the heights	
Left		10	9	8	8	7	6	5	4	3	3	2	1	
Right		10	9	8	8	7	6	5	4	3	3	2	1	
Bank stal	pility	Banks are evidence bank failu potential problems	stab of e show over	Banks are moderately stable; infrequent areas of erosion occur, mostly shown by banks healed over.			e moderatel 60% of the some area ligh potenti n during events.	s of ial	man (bard strain bend colla 60% eros	ks are unstance of the soils) along the section dispersion of the reaction scars.	ded areas ng ns or bank ure; > ach has			
Left		10	9		8	7	6	5	4	3		2	1	
Right		10	9	8	8	7	6	5	4	3	3	2	1	
Riparian buff	er width	Mainly undisturbed vegetation > 60 ft; no evidence of human impacts such as parking lots, roadbeds, clearcuts, mowed areas, crops, lawns etc.			vege	e of undistontion 40- e areas of urbance evi	60 ft;	vegetatio disturbed	indisturbed n 20-40 ft; areas com ut the reach	mon	Zone of undisturbed vegetation < 20 ft; disturbed areas common throughout the entire reach.			
Left		10	9	8	8	7	6	5	4	3	3	2	1	
Right		10	9	8	8	7	6	5	4	3	3	2	1	
_					1							•	•	
Total score			> 85		85 - 70			69 - 50				< 50		
Integrity r	atina	· Λ	ntimal			Subontin	mal	М	arginal		Poor			

Total score		> 85	85 - 70	69 - 50	< 50
Integrity rating		Optimal	Suboptimal	Marginal	Poor

SEDIMENT DEPOSITION MAY CAUSE THE FORMATION OF ISLANDS, POINT BARS (AREAS OF INCREASED DEPOSITION USUALLY AT THE BEGINNING OF A MEANDER THAT INCREASE IN SIZE AS THE CHANNEL IS DIVERTED TOWARD THE OUTER BANK) OR SHOALS, OR RESULT IN THE FILLING OF RUNS AND POOLS. USUALLY, DEPOSITION IS EVIDENT IN AREAS THAT ARE OBSTRUCTED BY NATURAL OR MANMADE DEBRIS AND AREAS WHERE THE STREAM FLOW DECREASES, SUCH AS BENDS.

Habitat comments:	

LAND USE: Indicate the land uses that you believe may be having an impact on your stream station. Use the letters (S) streamside, (M) within ¼ mile and (W) somewhere in the watershed, to indicate the approximate location of the disturbance and the numbers (1) slight, (2) moderate or (3) high, to represent the level of disturbance.

Active Construction		Pastureland		Single-family residences						
Mountaintop mining		Cropland		Sub-urban developments						
Deep mining		Intensive feedlots		Parking lots, strip-malls etc.						
Abandoned mining		Unpaved Roads		Paved Roads						
Logging		Trash dumps		Bridges						
Oil and gas wells		Landfills		Other (describe)						
Recreation (parks, trails etc.)		Industrial areas								
Land use comments: Pipes? Yes No										
Describe the types of pipes observed and indicate if there is any discharge from the pipes. Also describe the colors and odors of the discharge.										
PHOTOGRAPH and SKETCH YOUR REACH: Use the space below or a separate piece of paper to draw your study reach. Indicate the direction of flow, north, sample locations and important features of the reach. Photographs are an excellent method for tracking changes, especially changes related to the condition of the habitat. Choose a minimum of two permanent locations from which to take your photos. Submit your photos with your survey data sheet.										

BENTHIC MACROINVERTEBRATES

Assess your macroinvertebrate collections by counting and identifying to the family-level if possible. Use the table on the **below** to record your collections data. Although streamside identification is possible at this level, WV Save Our Stream's recommends preserving your samples using a full count or standard sub-sampling procedure in a well-lit and more comfortable setting.

The dot-dash tally method is a convenient way to record your data. Each dot or dash represents one tally.

1 2 3 4 5 6 7 8 9 10

INSECT GROUPS

Patterned stoneflies	Winter stoneflies	Roach-like stonefly
Taxa Total	Taxa Total	Total
Giant stonefly	Brown stonefly	Spiny crawler mayfly
-	,	
Total Square-gilled mayfly	Total Minnow mayflies	Total Flatheaded mayfly
Square-gilled mayriy	Minnow mayines	Flatneaded mayny
Total	Taxa Total	Total
Brush-legged mayfly	Burrowing mayflies	Net-spinning caddisflies
Total	Taxa Total	Taxa Total
Case-building caddisflies	Free-living caddisfly	Common netspinner
_		
Taxa Total Dragonflies	Total Damselflies	Total
Dragonnies	Damseilles	Nille beetle
Taxa Total	Taxa Total	Total
Long-toed beetle	Water penny	Other beetles (true bugs)
Total	Total	Taxa Total
Hellgrammite/Fishfly	Alderfly	Aquatic moth
	-	
Total	Total	Total

Continue recording on the next page.

Non-biting midge	Black fly		Crane fly	
Total		Total		Total
Watersnipe fly	Dance fly		Dixid midge	
Total		Total		Total
Net-wing midge	Horse fly		Other fly larva	
Total		Total	Таха	Total
Non-Insect Groups				
Crayfish	Scud/Sideswimmer		Aquatic sowbug	
Total Water mite	Operculate snails	Total	Non-operculate snail	Total
water filite	Operculate shalls		Non-operculate shan	5
.		T		- [
Pea clam	Taxa Asian clam	Total	Taxa Mussel	Total
Total		Total		Total
Flatworms	Aquatic worms	rotal	Leeches	rotar
Total		Total		Total
Other aquatic invertebrates	Comments:		·	
	Comments.			
			Total Taxa	Total Number
Taxa Total				
Describe other aquatic life (e.g., fi	sh. amphibians) collected o	r observed, as wel	l as other indications that	the reach is being
used by other animals (i.e., birds,				

BIOLOGICAL INTEGRITY

The SHADED boxes indicate that multiple FAMILIES are possible; tolerance values are provided.

TV	Macroinvertebrates	Totals	Tolerance score	Number of kinds	TV	Macroinvertebrates	Totals	Tolerance score	Number of kinds
1	Patterned stoneflies				6	Aquatic moth			
2	Winter stoneflies				5	Riffle beetle			
1	Roach-like stonefly				5	Long-toed beetle			
1	Giant stonefly				3	Water penny			
2	Little brown stonefly				5	Whirligig beetle			
3	Spiny crawler mayfly				7	Other beetles/bugs			
5	Square-gilled mayflies				3	Hellgrammite/Fishfly			
4	Minnow mayflies				6	Alderfly			
3	Flatheaded mayfly				9	Non-biting midge			
3	Brush-legged mayfly				6	Black fly			
5	Burrowing mayflies				4	Crane fly			
4	Net-spinning caddisflies				3	Watersnipe fly			
3	Case-building caddisflies				6	Dance fly			
5	Common netspinner				5	Dixid midge			
3	Free-living caddisfly				2	Net-wing midge			
4	Dragonflies				7	Horse fly			
7	Damselflies				8	Other fly larva			
				Non-Insec	t Grou	ps			
5	Crayfish				5	Pea clam			
5	Scud/Sideswimmer				6	Asian clam			
7	Aquatic sowbug				4	Mussel			
6	Water mite				5	Operculate snails			
10	Aquatic worms				7	Non-operculate snails			
10	Leeches				Oth	er invertebrates			
7	Flatworms							•	
Complete your calculations using the metrics below. These metrics are combined to determine your overall score and integrity rating.		Total Number	Total Tolerance	Total Kinds		Comments:			
					_				

BSVs	Metrics	Results	Points	10	8	6	4	2
21	Total Taxa			> 20	19 - 16	15 - 12	11 - 8	< 8
14	EPT Taxa			> 12	12 - 9	8 - 5	4 - 2	< 2
3.20	Biotic Index			< 3.2	3.2 – 4.0	4.1 – 5.2	5.3 – 6.0	> 6.0
90.0	% EPT Abundance			> 85	85 - 75	74.9 - 65	64.9 - 50	< 50
81.4	% Dominance			< 10	10 - 15	15.1 - 25	25.1 - 50	> 50
2.0	% Tolerant			< 2	2 - 10	10.1 - 15	15.1 - 20	> 20
				Integrity Ra	ating			

Stream Score Integrity Rating

	3		
> 50	50 - 40	39 – 25	< 25
Optimal	Suboptimal	Marginal	Poor

Another way to evaluate the benthic community is to use the best standard values (BSVs). BSVs are used to calculate an overall score and integrity rating based on a O-100 scale. CLICK-HERE to learn more.

Submit an original or clear copy of your survey to the Coordinator at the address provided below. For more information visit: https://go.wv.gov/sos

Philippi Field Office

Coordinator

WV Dept. of Environmental Protection 401 School Street, Suite 301 Philippi, WV 26416

Office: (304) 314-6095 Mobile: (681) 341-9305

Email: saveourstreams@wv.gov

Attn: Callie Cronin Sams