Causal Analysis of Fish Kills in the Shenandoah and Potomac Rivers 2007 Workshop Results

Amy Bergdale

U.S. Environmental Protection Agency Region 3 Wheeling, WV

Sue Norton

U.S. Environmental Protection Agency
Office of Research and Development
National Center for Environmental Assessment
Washington, DC

Disclaimer: The views expressed in this abstract are those of the author and do not necessarily reflect the view or policies of the U.S. Environmental Protection Agency

Motivation

- Fish kills in Shenandoah River or South Branch Potomac since 2002.
- Reports of intersex in male small mouth bass
- Apply Stressor Identification process to
 - Organize available information
 - Identify the cause, or reduce list of suspects
 - Inform 2007 sampling season

Stressor Identification www.epa.gov/caddis

Step 1: Define the Case 2006 Fish Kills

West Virginia

Where? Fort-Ashby eyser Romney Refersburg

Who?

When?

May 25 to 31

Acute only

Virginia

Where?

Who?

When? March to May 2006

2 Distinct Clinical Phases

- Acute (mid- March)
- Chronic (through late May)

Step 2: List Candidate Causes

Step 2: Candidate Causes

- 1. Low dissolved oxygen in the water
- 2. Gill damage from ammonia, high pH or other mechanism prevents fish from taking up oxygen
- 3. Altered blood chemistry from nitrite exposure prevents fish from using oxygen
- 4. Viral, bacterial, parasitic, or fungal infections
- 5. Mortality from high pH
- 6. Mortality from pH fluctuations
- 7. Mortality from ammonia toxicity
- 8. Unspecified toxic substances
- 9. Starvation

Steps 3, 4 and 5: Demonstrate Characteristics of Causal Relationships

- Co-occurrence
 - An effect occurs where and when its cause occurs and does not occur in the absence of its cause.
- Sufficiency
 - The intensity or frequency of a cause is adequate to produce the observed magnitude of effect.
- Temporality
 - A cause precedes its effects
- Manipulation-sensitive
 - The effect is altered when the cause is altered
- Coherence
 - Internally consistent
 - Consistent with scientific theory

1. Anoxia due to low dissolved oxygen

Mortality may occur:

DO levels fall < 4.0 mg/L

Elevated amounts of plant biomass—bacteria consume O₂

Point or Nonpoint Source Discharges high COD/BOD

Elevated H₂O temperatures---

reduce O₂ solubility to lethal levels

VA – REFUTED

WV - REFUTED

DO levels were normal, and well above 4.0 mg/L

2. Anoxia due to gill injury (gill hyperplasia)

Injuries to Gills:

Insufficient gas exchange

Death due to anoxia

(even w/ high DO levels)

Gill injury could have been caused by several causal pathways:

- Water Ammonia (0.2 mg/L caused gill injury in brown trout)
- Water pH (9.5 prevents NH₃ excretion—autointoxication
- Water Temperature
- Nitrate &/or Nitrite (sm. bass more sensitive than lm. bass)
- Stress, Seasonality, habitat changes

3. Anoxia due to low blood oxygen affinity - (Methemoglobinemia)

Nitrite is an oxidative stressor

- Blood nitrite levels are not indicative of environmental nitrite levels.
- Species sensitivity depends on their branchial CI- uptake rates.
- DO levels can be normal, gas exchange unimpaired, and death may still result from the reduced ability of the blood to carry O₂

Oxidative Stressors:

- •Heme group oxidized from the oxygen carrying ferrous ion (Fe²⁺) to the ferric state (Fe³⁺)
- •Methemoglobin will bind H₂O instead of O₂

•May induce hyperventilation and oxygen starvation

VA – PENDING

WV - PENDING

Brown blood not observed but more definitive data is needed from the pathology reports

4. Mortality due to other pathogenic modes of action

Compromised homeostatic functions via:

Bacterial infections
Viral infections
Parasitic infections
Fungal infections

Tissue damage Septicemia Role of stress?

Higher susceptibility to infections, environmental perturbations

Spawning, overwintering, EDCs?

5. Mortality due to High pH

- Disrupts blood chemistry
- Reduces O₂ delivery to tissue
- Reduce the effectiveness of the gill ion exchange and excretion

• Inhibits excretion of NH3 (see CC#3)

VA: Not supported (-) WV: Not supported (-)

No difference in pH extremes in locations/times of fish kills vs. no fish kills
High pHs in experiments net-

6. Mortality due to pH fluctuations

- Rivers exhibit diel fluctuations from photosynthesis
 - typical fluctuations range from 8.0 9.3
- Extremely high pH and substantial fluctuations can challenge the fish's ability to maintain homeostasis

VA: Not supported (-) WV: Not supported (-)

No difference in pH ranges in locations/times of fish kills vs. no fish kills

7. Mortality due to high ammonia concentrations

Example analyses from North Fork Shenandoah River case

8. Mortality due to unspecified toxic chemicals

Episodic increase in exposure to an unknown pollutant?

Sources:

Agriculture
Poultry, poultry processing
Highways
POTWs
Industrial
Legacy
Accidental/Illegal Dumping

9. Mortality due to starvation

- Lack of food
- Inability of fish to capture or ingest food
- Inability to assimilate nutrition from ingested material

Outcome: Narrowed List of Candidate Causes

- 1. Low dissolved oxygen in the water
- 2. Gill damage from ammonia, high pH or other mechanism prevents fish from taking up oxygen
- 3. Altered blood chemistry from nitrite exposure prevents fish from using oxygen
- 4. Viral, bacterial, parasitic, or fungal infections
- 5. Mortality from high pH
- 6. Mortality from pH fluctuations
- 7. Mortality from ammonia toxicity
- 8. Unspecified toxic substances
- 9. Starvation

Top Data Needs

Fish diagnostics (blood, tissue, gross & histopath)

- Generate baseline & archive
- Samples from sites with and without kills

Fish community conditions and structure

Broader geographic assessment during kills

- Define spatial extent of kills
- Combine VA and WVA databases
- Look more broadly within Potomac River

Temporal concerns

Rapid response kits

Toxic chemicals

Algae

Viruses

Test hypotheses in laboratory

Workshop Participants

John Wirts Andrew Johnson

Chris Barry

Patrick Campbell

Jim Hedrick

Laurie Olah

Matt Monroe

Doug Chambers

Stephen Reeser Don Kain

Larry M. Simmons

Ted Turner

Stephen McIninch

Larry Merrill Amy Bergdale

Lou Reynolds

WVDEP

WVDEP

WVDEP

WVDEP

WVDNR

WVDA

WVDA

USGS-WVWSC

VDGIF

VADEQ

VADEQ

VADEQ

VCU

EPA Region III

EPA Region III

EPA Region III

Frank Borsuk

Lou Reynolds

Kate Schofield

Pat Shaw-Allen

Sharon K. Taylor

Susan Norton

Glenn Suter

Joel Allen

Erin Quinlan

Jim Lazorchak

Molly Smith

Karen Andersen

Jeff Kelble

Jeroen Gerritsen

Don Catanzaro

Lynnette Sholar

EPA Region III

EPA Region III

USEPA

USEPA

USEPA

USEPA

USEPA

USEPA

USEPA

USEPA

Friends of Shen. R.

Friends of Shen. R.

Shen. River Keeper

Tetra Tech Inc.

TN&A

TN&A