

May 9, 2023

it's what's inside that counts

Joe Kessler West Virginia Division of Air Quality 601-57th St., SE Charleston, WV 25304 joseph.r.kessler@wv.gov

RE: Updates to January and March 2023 Air Quality Permit Application Permit Number: R14-0040 Applicant: CMC Steel US, LLC Facility: CMC Steel West Virginia

Dear Mr. Kessler:

On January 3, 2023, CMC Steel US, LLC (CMC) submitted an air quality permit application for the development of a Prevention of Significant Deterioration (PSD) Permit to Construct for a new micro mill and associated support operations in Berkeley County, West Virginia (the proposed Project). On March 24, 2023, CMC submitted an updated version of the January 3, 2023 application that addressed comments provided. We appreciate your review and comments on our application. Pursuant to discussions with our team enclosed is an updated version of the March 24, 2023, application that addresses additional comments provided. The following is a summary of the primary changes to the application:

- Section 1 (Executive Summary): Added physical address of the proposed Project.
- Attachment D (Regulatory Discussion): Updates to Table 6-1 due to the changes discussed in this cover letter and enclosed application.
- Attachment F (Detailed Process Flow Diagrams): Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.
- Attachment I (Emission Units Table):
 - Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
 - Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.
 - Removes the proposed controls on TR11A Outside SPP Pile Drop Points, Slag.
- Attachment J (Emission Points Data Summary Sheet): Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
- Attachment L (Emissions Unit Data Sheets):
 - Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
 - Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.

- Attachment N (Supporting Emissions Calculations):
 - Table 16-1: Updates to the Summary of Application Proposed Hourly PTE due to the changes discussed in this cover letter and enclosed application.
 - Table 16-2: Updates to the Summary of Application Proposed Annual PTE due to the changes discussed in this cover letter and enclosed application.
 - Section 16.7: Correct the source of the emission factors associated with binder usage to "based on process experience from other CMC micro-mills."
 - Section 16.8: Removes crushing from the description of the calculation methodology as no crushing will be performed at the slag processing plant.
 - Section 16.10: Updates the windspeed used in the underlying calculations from Hagerstown to the Martinsburg airport.
 - Section 16.11: References new Appendix C which contains the road segments details utilized in developing the road emissions estimates.
- Section 23 (Best Available Control Technology (BACT)): Streamline the "Identify Air Pollution Control Technologies" description for the technically feasible GHG reduction practices summarized in Table 23-7.
- Appendix A (Emission Calculation Details):
 - Updates the EAF and LMS caster vent emissions of lead, Fluorides, and metal HAPs.
 - o Adjustment to the EAF/LMS Fluorides emission factor.
 - Removes reference to the Caster emissions in Table A-4b as these are addressed separately in Table A-6.
 - Adjustment to the usage of the annual utilization percent in the annual emission calculations for the combustion sources.
 - Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
 - Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.
 - Removes the proposed controls on TR11A Outside SPP Pile Drop Points, Slag.
 - Removes crushing from the description of TR11B1.
 - Updates the wind speed in the material handling calculations as well as the % of time the unobstructed wind speed exceeds 12 mph at the pile height in the storage pile calculations due to change in meteorological station from Hagerstown to Martinsburg.
 - Increase the diesel throughput for the tanks.
- Appendix C (Road Segment Details): New appendix which contains the road segments details utilized in developing the road emissions estimates.

If you have any questions or comments about the information in the enclosed application, please do not hesitate to call Brad Bredesen at 830-305-5250 or at <u>Steven.Bredesen@cmc.com</u>.

I, the undersigned Responsible Official, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein

in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code §22-5-1 et seq. (State Air Pollution Control Act).

Sincerely,

CMC Steel US, LLC

Billy Milligan Vice President,

Enclosure

cc: Brad Bredesen, CMC Alan Gillespie, CMC Michael Noll, CMC Eddie Al-Rayes, Trinity Consultants Dave Flannery, Steptoe & Johnson PLLC

AIR QUALITY PERMIT APPLICATION

CMC Steel US, LLC / Martinsburg, WV

Prepared By:

TRINITY CONSULTANTS

4500 Brooktree Road, Suite 310 Wexford, PA 15090 (724) 935-2611

> January 2023 (Revised May 2023)

Project 220506.0013

TABLE OF CONTENTS

1.	EXECUTIVE SUMMARY 1	-1
2.	WVDAQ APPLICATION FORM 2	2-1
3.	ATTACHMENT A: BUSINESS CERTIFICATE 3	8-1
4.	ATTACHMENT B: MAPS 4	-1
5.	ATTACHMENT C: INSTALLATION AND START UP SCHEDULE 5	-1
6.	6.1 Federal Major New Source Review (NSR)	5-2 5-2 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3 5-3
	6.5.2 NESHAP Subpart Q 6 6.5.3 NESHSP Subpart CCC 6 6.5.4 NESHAP Subpart ZZZ 6 6.5.5 NESHAP Subpart DDDDD 6 6.5.6 NESHAP Subpart DDDDD 6 6.5.7 NESHAP Subpart EEEE 6 6.5.7 NESHAP Subpart FFFF 6 6.5.8 NESHAP Subpart JJJJJJ 6 6.5.9 NESHAP Subpart ZZZZ 6 6.5.10 NESHAP Subpart ZZZZZ 6 6.6 Compliance Assurance Monitoring 6 6.7 Chemical Accident Prevention 6 6.8 Stratospheric Ozone Protection Regulations 6 6.9 West Virginia Administrative Code 6 6.9.1 45CSR2: To Prevent and Control Particulate Air Pollution from Manufacturing Process 6 0perations 6 6.9.1 45CSR10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides 6 6.9.2 45CSR11: Permits for	5-5 5-5 5-5 5-5 5-6 5-6 5-6 5-6 5-6 5-6

			45CSR30 - Requirements for Operating Permits 45CSR34 – Emission Standards for Hazardous Air Pollutants	
7	ΛΤΤΛ		INT E: PLOT PLAN	7-1
/ ·	ALLA		INTE. FLOT FLAN	/-1
8.	ATTA	CHME	INT F: DETAILED PROCESS FLOW DIAGRAMS	8-1
9.	ATTA		ENT G: PROCESS DESCRIPTION	9-1
	9.1	Raw N	Material Storage and Handling	9-2
	9.2		shop	
			Electric Arc Furnace (EAF)	
			Ladle Metallurgy Station (LMS)	
			Casting Operations	
		9.2.4		
		9.2.5		
		9.2.6		
	9.3		ng Mill	
	9.4		ng Beds	
	9.5		hing and Transportation	
	9.6		ler	
	9.7		Processing Plant	
	9.8		d/Unpaved Roads	
	9.9		ies	
			Cooling Towers	
			Fuel Storage Tanks	
		9.9.3	- 5 - 7	
		9.9.4	Other Miscellaneous Equipment	9-8
10	ATTA	CHME	ENT H: MATERIAL SAFETY DATA SHEETS	10-1
11	ATTA	CHME	ENT I: EMISSION UNITS TABLE	11-1
12	. ATTA	CHME	ENT J: EMISSION POINTS DATA SUMMARY SHEET	12-1
13		CHME	ENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET	13-1
			INT L: EMISSIONS UNIT DATA SHEETS	14-1
14	ALLA		INTE. EMISSIONS UNIT DATA SHEETS	14-1
15	ATTA	CHME	ENT M: AIR POLLUTION CONTROL DEVICE SHEETS	15-1
16	ATTA	CHME	INT N: SUPPORTING EMISSIONS CALCULATIONS	16-1
	16.1	Electr	ric Arc Furnace (EAF) and Ladle Metallurgy Station (LMS)	
		16.1.1	PM Emissions	16-8
		16.1.2	2 Criteria Pollutants (Except for PM) and Fluoride Emissions	16-8
		16.1.3	3 GHG Emissions	16-9
			HAP Emissions	
			ng Mill, Cooling Beds, & Spooler Vents	
	16.3	Silos .		16-10
	16.4	Caste	er Teeming	16-11
			ng Towers	
	16.6		Combustion	
		16.6.1	Criteria Pollutant Emissions	16-12

16.6.2 GHG Emissions	16-13
16.6.3 HAP Emissions	16-13
16.7 Binder Usage	16-14
16.8 Material Transfers	16-14
16.9 Ball Drop Crushing	16-15
16.10 Storage Piles	16-16
16.11 Roads	
16.11.1 Emissions from Unpaved Roads	16-17
16.11.2 Emissions from Paved Roads	
16.12 Diesel Combustion	16-18
16.12.1 Criteria Pollutant Emissions	16-18
16.12.2 GHG Emissions	
16.12.3 HAP Emissions	
16.13 Torch Cutting	
16.14 Storage Tanks	
16.15 De Minimis Sources	
17. ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS	17-1
18. ATTACHMENT P: PUBLIC NOTICE	18-1
19. ATTACHMENT Q: BUSINESS CONFIDENTIAL CLAIMS (NOT APPLICABLE)	19-1
20. ATTACHMENT R: AUTHORITY FORMS (NOT APPLICABLE)	20-1
21. ATTACHMENT S: TITLE V PERMIT REVISION INFORMATION (NOT APPLICABLE)	21-1
22. APPLICATION FEES	22-1
23. BEST AVAILABLE CONTROL TECHNOLOGY (BACT)	23-1
23.1 PSD BACT Top-Down Approach	
23.1.1 Step 1 – Identify Air Pollution Control Technologies	
23.1.2 Step 2 – Eliminate Technically Infeasible Options	
23.1.3 Step 3 – Rank Remaining Control Technologies	
23.1.4 Step 4 – Evaluate and Document Most Effective Controls	
23.1.5 Step 5 – Select BACT	
23.2 Steel Mill Types	
23.2.1 Steel Micro Mills and Endless Charging System (ECS)	
23.2.2 Scrap Metal Quality	
23.3 EAF and LMS Emissions Routed to Meltshop Baghouse	23-5
23.3.1 CO BACT Limit	
23.3.2 NOx BACT Limit	
23.3.3 SO ₂ BACT Limit	
23.3.4 PM BACT Limit	
23.3.5 VOC BACT Limit	23-7
	-
	23-7
23.3.6 GHGs (CO2e) BACT Limit	23-7 23-7
23.3.6 GHGs (CO2e) BACT Limit 23.3.7 Fluorides (excluding Hydrogen Fluoride) BACT Limit	23-7 23-7 23-7
23.3.6 GHGs (CO ₂ e) BACT Limit 23.3.7 Fluorides (excluding Hydrogen Fluoride) BACT Limit 23.4 Non-Combustion Emission Sources Routed to Caster Vent	23-7 23-7 23-7 23-39
 23.3.6 GHGs (CO₂e) BACT Limit	23-7 23-7 23-7 23-39 23-40
23.3.6 GHGs (CO ₂ e) BACT Limit 23.3.7 Fluorides (excluding Hydrogen Fluoride) BACT Limit 23.4 Non-Combustion Emission Sources Routed to Caster Vent	23-7 23-7 23-7 23-39 23-40 23-49

23.8 St	orage Piles & Material Transfer	
23.9 Di	esel-Fired Engines Associated with Emergency Generators	
23.10	Cooling Towers	
23.11	Ball Drop Crushing	
23.12	Roads	
APPENDIX	A. EMISSION CALCULATIONS DETAILS	A-1
APPENDIX	B. EPA RBLC SEARCH RESULTS	B-1
APPENDIX	C. ROAD SEGMENTS DETAILS	C-1

LIST OF FIGURES

Figure 4-1. Area Map of Proposed Project	4-1
Figure 4-2. Site Map of Proposed Project	4-2
Figure 9-1. Example Micro Mill Process Diagram	9-3

LIST OF TABLES

Table 6-1. Summary of Emissions from Proposed Project and PSD Permitting Applicability	6-3
Table 6-2. 45CSR7 Section 4.1 Compliance Demonstration	6-10
Table 16-1. Summary of Application Proposed Hourly PTE	16-3
Table 16-2. Summary of Application Proposed Annual PTE	16-5
Table 16-3. EAF & LMS Capture Efficiencies	16-7
Table 23-1. Summary of Selected BACT for EAF/LMS	23-5
Table 23-2. CO Top-Down BACT Analysis for EAF and LMS	23-9
Table 23-3. NO _x Top-Down BACT Analysis for EAF and LMS	23-13
Table 23-4. SO ₂ Top-Down BACT Analysis for EAF and LMS	23-16
Table 23-5. PM Top-Down BACT Analysis for EAF and LMS	23-18
Table 23-6. VOC Top-Down BACT Analysis for EAF and LMS	23-23
Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS	23-26
Table 23-8. Fluorides Top-Down BACT Analysis for EAF and LMS	23-35
Table 23-9. CO Top-Down BACT Analysis for Natural Gas Combustion Emission Sources	23-41
Table 23-10. NO _x Top-Down BACT Analysis for Natural Gas Combustion Emission Sources	23-42
Table 23-11. SO ₂ Top-Down BACT Analysis for Natural Gas Combustion Emission Sources	23-43
Table 23-12. PM Top-Down BACT Analysis for Natural Gas Combustion Emission Sources	23-45
Table 23-13. VOC Top-Down BACT Analysis for Natural Gas Combustion Emission Sources	23-47
Table 23-14. GHG Top-Down BACT Analysis for Natural Gas Combustion Emission Sources	23-48
Table 23-15. Summary of Selected BACT for Rolling Mill, Cooling Beds, & Spooler Vents	23-49
Table 23-16. PM Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent	23-50
Table 23-17. VOC Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent	23-52
Table 23-18. Summary of Selected BACT for Storage Silos	23-54
Table 23-19. PM Top-Down BACT Analysis for Storage Silos	23-55

Table 23-20. Summary of Selected BACT for Storage Piles	23-57
Table 23-21. PM Top-Down BACT Analysis for Storage Piles & Material Transfers	23-58
Table 23-22. Summary of Selected BACT for Emergency Engines	23-60
Table 23-23. CO Top-Down BACT Analysis for Emergency Engines	23-61
Table 23-24. NO _x Top-Down BACT Analysis for Emergency Engines	23-62
Table 23-25. SO ₂ Top-Down BACT Analysis for Emergency Engines	23-64
Table 23-26. PM Top-Down BACT Analysis for Emergency Engines	23-65
Table 23-27. VOC Top-Down BACT Analysis for Emergency Engines	23-67
Table 23-28. GHG Top-Down BACT Analysis for Emergency Engines	23-69
Table 23-29. Summary of Selected BACT for Cooling Towers	23-70
Table 23-30. PM Top-Down BACT Analysis for Cooling Towers	23-71
Table 23-31. Summary of Selected BACT for Ball Drop Crushing	23-73
Table 23-32. PM Top-Down BACT Analysis for Ball Drop Crushing	23-74
Table 23-33. Summary of Selected BACT for Roads	23-75
Table 23-34. PM Top-Down BACT Analysis for Roads	23-76

1. EXECUTIVE SUMMARY

CMC Steel US, LLC (CMC) is proposing to construct and operate a new micro mill and associated support operations at 447 Dupont Road, Martinsburg, WV 25404 in Berkeley County, West Virginia (the proposed Project). With this application, CMC is seeking a Permit to Construct for the proposed Project in accordance with West Virginia Code of State Rules (CSR), Title 45, Series 14 (45CSR14).

Berkeley County is currently designated as "attainment" or "unclassified" for all regulated New Source Review (NSR) pollutants. The proposed Project will be a major source with respect to the Prevention of Significant Deterioration (PSD) and the Title V operating permit programs. With respect to the PSD program, the proposed Project will be a major source for the following pollutants:

- Filterable particulate matter (PM);
- Total particulate matter less than or equal to ten microns (PM₁₀);
- Total particulate matter less than or equal to 2.5 microns (PM_{2.5});
- Nitrogen oxides (NOx);
- Carbon monoxide (CO);
- Volatile organic compounds (VOC);
- Sulfur dioxide (SO₂)
- Fluoride (F) excluding hydrogen fluoride (HF); and
- Greenhouse gases (GHGs).

Pursuant to West Virginia Department of Environmental Protection (WVDEP) application form requirements, this application includes the following sections and attachments:

- Attachment A: Business Certificate
- Attachment B: Maps
- Attachment C: Installation and Start-up Schedule
- Attachment D: Regulatory Discussion (containing a state and federal regulatory applicability analysis for the proposed Project)
- Attachment E: Plot Plan
- ► Attachment F: Detailed Process Flow Diagrams
- Attachment G: Process Description
- Attachment H: Material Safety Data Sheets
- ► Attachment I: Emission Units Table
- Attachment J: Emission Points Data Summary Sheet
- Attachment K: Fugitive Emissions Data Summary Sheet
- Attachment L: Emission Unit Data Sheets
- Attachment M: Air Pollution Control Device Sheets
- Attachment N: Supporting Emission Calculations
- ► Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
- Attachment P: Public Notice
- Attachment Q: Business Confidential Claims (Not Applicable)
- Attachment R: Authority Forms (Not Applicable)
- Attachment S: Title V Permit Revision Information (Not Applicable)
- Section 20: Application fees
- Section 23: Best Available Control Technology (BACT) (addressing the EPA recommended 5-step topdown approach to determining BACT for applicable emission units)

CMC will provide under separate cover, dispersion modeling analyses to demonstrate that the proposed Project will not:

- 1. Cause or significantly contribute to a violation of any applicable NAAQS;
- 2. Cause or significantly contribute to a violation of incremental standards; or
- 3. Cause any other adverse impacts to the surrounding area (i.e., impacts on soil and vegetation, visibility degradation, etc.).

2. WVDAQ APPLICATION FORM

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wy.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN) CONSTRUCTION D MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION
	tion Guidance" in order to determine your Title V Revision options to operate with the changes requested in this Permit Application.
Section	I. General
1. Name of applicant (as registered with the WV Secretary of S CMC Steel US, LLC	State's Office): 2. Federal Employer ID No. (FEIN): 8 2 4 0 6 5 2 4 7
3. Name of facility (if different from above):	4. The applicant is the:
CMC Steel West Virginia	🖸 OWNER 🛄 OPERATOR 🖾 BOTH
5A. Applicant's mailing address: 1 Steel Mill Dr Seguin, TX 78155	5B. Facility's present physical address:
change amendments or other Business Registration Certific	Organization/Limited Partnership (one page) including any nam cate as Attachment A. ority of L.L.C./Registration (one page) including any name chang
7. If applicant is a subsidiary corporation, please provide the na	ame of parent corporation: Commercial Metals Company
 8. Does the applicant own, lease, have an option to buy or othe If YES, please explain: CMC will own parcels of land If NO, you are not eligible for a permit for this source. 	· · · <u> </u>
9. Type of plant or facility (stationary source) to be constructed administratively updated or temporarily permitted (e.g., crusher, etc.): Steel Mill	ed, modified, relocated, coal preparation plant, primary (NAICS) code for the facility 331210
	List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only):
All of the required forms and additional information can be found o	under the Permitting Section of DAQ's website, or requested by phor

12A.

128.		
 For Modifications, Administrative Updates present location of the facility from the neare 	s or Temporary permits at an existing facility, st state road;	please provide directions to the
 For Construction or Relocation permits, pl road. Include a MAP as Attachment B. 	ease provide directions to the proposed new s	site location from the nearest state
The proposed site will be located on the North side Mills Primary School (401 Campus Dr, Marti		ately 1 kilometer east of the Spring
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
N/A	Martinsburg	Berkeley
12.E. UTM Northing (KM): 4,380.501	12F. UTM Easting (KM): 251.728	12G. UTM Zone: 18
13. Briefly describe the proposed change(s) at the CMC is proposing to construct a new steel mill at the con	-	· · · · · · · · · · · · · · · · · · ·
 14A. Provide the date of anticipated installation of If this is an After-The-Fact permit application change did happen: 	-	14B. Date of anticipated Start-Up if a permit is granted: 12/01/2025
14C. Provide a Schedule of the planned Installat application as Attachment C (if more than o		units proposed in this permit
15. Provide maximum projected Operating Sche Hours Per Day 24 Days Per Wee		ation:
16. Is demolition or physical renovation at an exis	ting facility involved? YES NO	
17. Risk Management Plans. If this facility is sub	pject to 112(r) of the 1990 CAAA, or will becom	ne subject due to proposed
changes (for applicability help see www.epa.go	ov/ceppo), submit your Risk Management Pla	n (RMP) to U.S. EPA Region III.
18. Regulatory Discussion. List all Federal and	State air pollution control regulations that you	believe are applicable to the
proposed process (if known). A list of possible	applicable requirements is also included in Att	achment S of this application
(Title V Permit Revision Information). Discuss a	applicability and proposed demonstration(s) of	compliance (if known). Provide this
information as Attachment D.		
Section II. Additiona	al attachments and supporting d	ocuments.
 Include a check payable to WVDEP – Division 45CSR13). 		
20. Include a Table of Contents as the first page	of your application package.	
 Provide a Plot Plan, e.g. scaled map(s) and/o source(s) is or is to be located as Attachmen 		erty on which the stationary
 Indicate the location of the nearest occupied st 	ructure (e.g. church, school, business, resider	nce).
22. Provide a Detailed Process Flow Diagram(s device as Attachment F.	s) showing each proposed or modified emission	ons unit, emission point and control

23. Provide a Process Description as Attachment G.

Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.

- For chemical processes, provide a MSDS for each compound emitted to the air.

25. Fill out the Emission Units Table a		
26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.		
27. Fill out the Fugitive Emissions Da	ta Summary Sheet and provide it	as Attachment K.
28. Check all applicable Emissions Ur	nit Data Sheets listed below:	
Bulk Liquid Transfer Operations	🛛 Haul Road Emissions	Quarry
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
Concrete Batch Plant	Incinerator	Facilities
Grey Iron and Steel Foundry	Indirect Heat Exchanger	🛛 Storage Tanks
General Emission Unit, specify Mate	rial Handling, Emergency Generato	or, Emergency Fire Pump
Fill out and provide the Emissions Unit	t Data Sheet(s) as Attachment L.	
29. Check all applicable Air Pollution	Control Device Sheets listed below	w:
Absorption Systems	Baghouse	☐ Flare
Adsorption Systems	Condenser	Mechanical Collector
	Electrostatic Precipitat	tor Wet Collecting System
Other Collectors, specify		
Fill out and provide the Air Pollution Co		
30. Provide all Supporting Emissions Items 28 through 31.	Calculations as Attachment N, o	or attach the calculations directly to the forms listed in
	te compliance with the proposed en	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit
measures. Additionally, the DAQ n	ust be practically enforceable wheth nay not be able to accept all measu Q will develop such plans and includ	her or not the applicant chooses to propose such ires proposed by the applicant. If none of these plans de them in the permit.
32. Public Notice. At the time that the	e application is submitted, place a (Class I Legal Advertisement in a newspaper of general
		SR§13-8.3 through 45CSR§13-8.5 and Example Legal
Advertisement for details). Please	e submit the Affidavit of Publicatic	on as Attachment P immediately upon receipt.
33. Business Confidentiality Claims.	Does this application include conf	idential information (per 45CSR31)?
🗋 YES		
segment claimed confidential, inclu	formation on each page that is subr Iding the criteria under 45CSR§31-4 y" guidance found in the General I	nitted as confidential and provide justification for each 4.1, and in accordance with the DAQ's <i>"Precautionary nstructions</i> as Attachment Q.
S	Section III. Certification o	of Information
34. Authority/Delegation of Authority Check applicable Authority Form		her than the responsible official signs the application.
Authority of Corporation or Other Bu	siness Entity	Authority of Partnership
Authority of Governmental Agency	•	Authority of Limited Partnership
Submit completed and signed Authority		
All of the required forms and additional li	nformation can be found under the P	ermitting Section of DAQ's website, or requested by phone.

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE THELE	use blue ink)	DATE: 12/21/22 (Please use blue ink)
35B. Printed name of signee: Billy Milligan		35C. Title: Vice President, Sustainability, and Government Affairs
35D. E-mail: Billy.Milligan@cmc.com	36E. Phone: (972) 409-4799	36F. FAX:
36A. Printed name of contact person (if differe	nt from above): Brad Bredesen	36B. Title: Director of Environmental
36C. E-mail: Steven.Bredesen@cmc.com	36D. Phone: (830) 305-5250	36E. FAX:

 ☑ Attachment I: Emission Units Table ☑ Attachment S: Title V Permit Revision Information ☑ Attachment J: Emission Points Data Summary Sheet ☑ Attachment J: Emission Points Data Summary Sheet ☑ Application Fee Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at 	 Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information
address listed on the first page of this application. Please DO NOT fax permit applications.	e permit application with the signature(s) to the DAQ, Permitting Section, at the
address listed on the first page of this OR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE: Forward 1 copy of the application to the Title V Permittin	ni:

NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

NSR permit writer should notify Title V permit writer of draft permit.

☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- SR permit writer should notify a Title V permit writer of draft permit,
- Public notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

3. ATTACHMENT A: BUSINESS CERTIFICATE

I, Mac Warner, Secretary of State, of the State of West Virginia, hereby certify that

CMC STEEL US, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.

Given under my hand and the Great Seal of West Virginia on this day of November 30, 2022

Mac Warner

Secretary of State

4. ATTACHMENT B: MAPS

Figure 4-1 depicts the area map of the proposed Project including roads, general boundaries of towns and other nearby municipalities, and proximity to major geographical features such as the Potomac River.

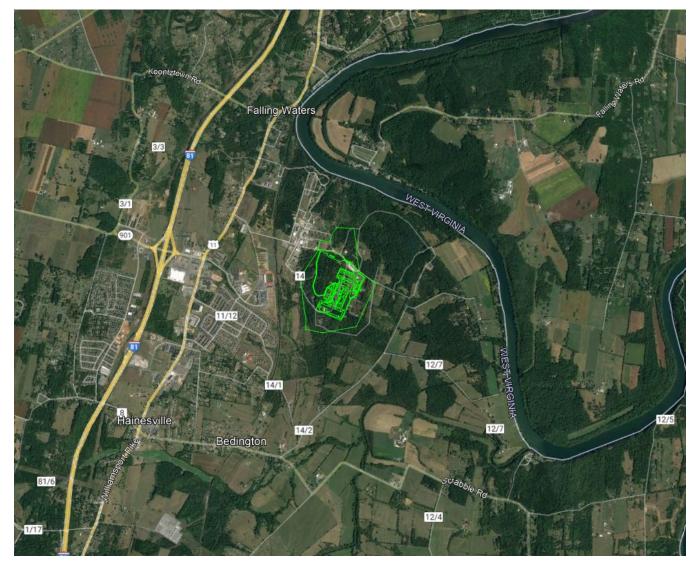


Figure 4-1. Area Map of Proposed Project

Figure 4-2 depicts the site map of the proposed Project including fenceline and anticipated locations of proposed Project features such as buildings.

Figure 4-2. Site Map of Proposed Project

5. ATTACHMENT C: INSTALLATION AND START UP SCHEDULE

As noted on the WVDAQ application form the date of anticipated installation is June 2023 and the date of anticipated start-up is December 2025.

6. ATTACHMENT D: REGULATORY DISCUSSION

This section discusses the air permitting requirements and key air quality regulations that potentially apply to the proposed Project, including major New Source Review (NSR), New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAP), and West Virginia 45 Code of State Rules (CSR) regulations.

6.1 Federal Major New Source Review (NSR)

Two distinct major New Source Review (NSR) permitting programs potentially apply depending on whether a source is located in an "attainment/unclassifiable" or "nonattainment" area for a particular regulated NSR pollutant. The Prevention of Significant Deterioration (PSD) program provisions govern potential major NSR actions in areas which are designated to be in attainment or unclassifiable status. The Nonattainment NSR (NA-NSR) program governs potential major NSR actions in areas which are designated major NSR actions in areas which are nonattainment for one or more regulated pollutants.

The proposed Project will be located near Martinsburg, West Virginia, that is currently designated as attainment or unclassified for all criteria pollutants (see 40 CFR 81.349). As a result, for purposes of federal major NSR applicability, all regulated attainment NSR pollutants are evaluated for applicability under the PSD program. Iron and steel mill plants are classified as one of the 28 listed source categories in Title 45, Legislative Rule of the Department of Environmental Protection, Series 14 (45CSR14) Section 2.43.a. with a 100 ton per year (tpy) "major" source PSD threshold. If the proposed Project Potential-to-Emit (PTE) is above the major source thresholds set for regulated NSR pollutants, PSD is triggered for that pollutant. Table 6-1 contains a summary of the proposed Project major NSR evaluation.

The proposed Project PTE exceeds the PSD major source thresholds for CO and is therefore subject to PSD requirements. For PSD purposes, if a source exceeds the major stationary source threshold for one regulated NSR pollutant, it is considered major for any other regulated NSR pollutant emitted above its corresponding significant emission rate (SER). The proposed Project PTE exceeds the SERs for PM, PM₁₀, PM_{2.5}, NOx, VOC, SO₂, Fluorides excluding hydrogen fluoride (HF), and greenhouse gases (GHGs). Per 40 CFR 52.21(b)(49)(iv), GHGs are a regulated NSR pollutant if the stationary source is a new major source for a regulated NSR pollutant which is not GHGs and will also have the potential to emit 75,000 tpy CO₂e or more. The proposed Project GHG PTE exceeds this threshold and therefore is subject to PSD review for GHGs. The proposed Project will be subject to PSD program requirements contained under 45CSR14.

Parameter	Annual PTE (tpy)												
	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NOx	со	VOC	SO ₂	Pb	Fluorides	Max Single HAP⁴	Total HAP	CO2e
Site-Wide Emissions	67	155	145	139	137	1,328	100	101	0.53	3.29	1.69	2.84	157,635
Major NSR "Major Source" Threshold ^{1, 3}	100	-	100	100	100	100	100	100	100	100	-	-	-
Title V Threshold ³	100	-	100	100	100	100	100	100	-	-	10	25	100,000
Project Exceeds Major NSR "Major Source" Threshold?	No	-	Yes	Yes	Yes	Yes	Yes	Yes	No	No	-	-	No
Project Exceeds Title V Thresholds?	No	-	Yes	Yes	Yes	Yes	Yes	Yes	-	-	No	No	Yes
PSD Significant Emission Rates (SERs) ²	25	-	15	10	40	100	40	40	0.6	3	-	-	75,000
Project Meets or Exceeds PSD SER?	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	-	-	Yes

Table 6-1. Summary of Emissions from Proposed Project and PSD Permitting Applicability

¹ Major source per 40 CFR 52.21(b). NOx is a regulated NSR pollutant for purposes of evaluating PSD applicability because NOx, as measured in the ambient air as nitrogen dioxide (NO₂),

is a pollutant for which a national ambient air quality standard (NAAQS) has been promulgated (see 40 CFR 50.11).

² PSD Significant Emission Rates (SERs) as defined in 40 CFR 52.21.

³ VOC is not a criteria pollutant but is considered to be a precursor to ozone. Stated value corresponds to the ozone threshold.

⁴ Max Single HAP is Manganese.

6.2 Title V Operating Permit Program

The requirements of 40 CFR Part 70 establish the federal Title V operating permit program elements required for a state to accept delegation of authority from the U.S. EPA. West Virginia has promulgated the necessary provisions of this Title V operating permit program. Initially, U.S. EPA granted final full approval effective on November 19, 2001. Since then, West Virginia adopted the necessary revisions to remain the delegated authority for the Part 70 operating permit program. To date, West Virginia implements a fully approved Part 70 operating permit program under 45CSR30 (see 40 CFR 70, Appendix A).

The proposed Project is located near Martinsburg, West Virginia, which is classified as attainment or maintenance for all criteria pollutants. Therefore, the major source threshold for all criteria pollutants is 100 tpy; 10 tpy of any single hazardous air pollutant (HAP); 25 tpy of any combination of HAPs; and 100,000 tpy of GHGs.

As noted in Table 6-1, the site-wide potential emissions at the proposed Project trigger major source thresholds for PM_{10} , $PM_{2.5}$, and CO. As such, the proposed Project will be subject to Title V program requirements contained under 45CSR30.

6.3 Minor New Source Review

Section 110(a)(2)(C) of the Clean Air Act (CAA) requires State Implementation Plans (SIPs) to include a preconstruction permit program for both major and minor sources. Sources which do not constitute a major source subject to the requirements of 45CSR14, *Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration*, are potentially subject to the requirements of 45CSR13, *Permits For Construction, Modification, Relocation and Operation Of Stationary Sources Of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission To Commence Construction, And Procedures For Evaluation.*

A facility is subject to the requirements of 45CSR13 if any of the following criteria are met ¹:

- ▶ 6 lbs/hr and 10 tpy of any regulated air pollutant; or
- ▶ 144 lbs/day of any regulated air pollutant; or
- 2 lbs/hr or 5 tpy of aggregated HAP; or
- ▶ 45CSR27 TAP (10% increase if above BAT triggers an increase to BAT triggers); or
- Subject to applicable standard or rule.

As summarized in Table 6-1, the site-wide PTE is in excess of these levels and therefore the proposed Project must obtain a construction permit. This application is being filed to satisfy the requirements of 45CSR13 and 45CSR14.

6.4 New Source Performance Standards

New Source Performance Standards (NSPS), contained in 40 CFR 60, consist of technology-based standards developed by EPA that are applicable to certain types of equipment ("affected facilities") which are newly constructed, modified, or reconstructed after a given applicability date. A summary of NSPS applicability is provided below for the relevant emission units that are part of the proposed Project.

¹ Per <u>Permit Levels for 45CSR13 (wv.gov)</u>

6.4.1 NSPS Subpart A - General Provisions

All affected facilities subject to NSPS are also subject to the applicable General Provisions of NSPS Subpart A unless specifically excluded by a specific NSPS Subpart. For example, NSPS Subpart A addresses the following for affected facilities subject to a specific NSPS Subpart:

- Initial construction/reconstruction notification;
- Initial startup notification;
- Performance tests;
- Performance test date initial notification;
- General monitoring requirements;
- General recordkeeping requirements; and
- Semi-annual monitoring system and/or excess emission reports.

Because the proposed Project will include affected facilities subject to a specific NSPS Subpart, the NSPS Subpart A General Provisions will apply.

6.4.2 NSPS Subpart Dc - Standards of Performance for Small Industrial-Commercial Steam Generating Units

NSPS Subpart Dc, *Standards of Performance for Small Industrial-Commercial Steam Generating Units*, applies to each steam generating unit constructed after June 9, 1989 which has a heat input capacity greater than 10 MMBtu/hr, but less than or equal to 100 MMBtu/hr. A steam generating unit is defined under 40 CFR § 60.41c as "a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart."

The following proposed units do not fall under the definition of "steam generating unit" contained in 40 CFR §60.41c as they are direct-fired and do not utilize a transfer medium. Additionally, all units are rated less than 10 MMBtu/hr.

- Three (3) ladle preheaters (6 MMBtu/hr each);
- Two (2) ladle dryers (8 MMBtu/hr each);
- Two (2) tundish preheaters (6 MMBtu/hr each);
- One (1) tundish dryer (6 MMBtu/hr);
- One (1) tundish mandril dryer (1 MMBtu/hr);
- One (1) shroud heater (0.5 MMBtu/hr);
- Twenty (20) Meltshop comfort heaters (0.4 MMBtu/hr each);
- One (1) bit furnace (0.225 MMBtu/hr);
- Twenty (20) rolling mill comfort heaters (0.4 MMBtu/hr each); and
- Cutting torches (0.32 MMBtu/hr).

As such NSPS Subpart Dc does not apply to the proposed units. There are no other units that meet the definition of steam generating unit and therefore NSPS Subpart Dc does not apply to the proposed Project.

6.4.3 NSPS Subpart Kb

NSPS Subpart Kb, *Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984*, applies to each storage vessel with a capacity greater than or equal to 75 cubic meters

(m³) that is used to store volatile organic liquids (VOLs) which commenced construction, modification, or reconstruction after July 23, 1984. The proposed Project includes storage vessels that will store a VOL. However, the vessel capacities are less than 75 m³ (or approximately 19,800 gallons) each and will be storing diesel, a VOL with a low vapor pressure. Therefore, the proposed Project will not be subject to the requirements of NSPS Subpart Kb.

6.4.4 NSPS Subpart AA

NSPS Subpart AA, *Standards of Performance for Steel Plants: Electric Arc Furnaces constructed after October 21, 1974, and on or Before August 17, 1983*, applies to electric arc furnaces and dust-handling systems at steel plants that produce carbon, alloy, or specialty steels which commenced construction, modification, or reconstruction after October 21, 1974, and on or before August 17, 1983. The proposed Project will be constructed after August 17, 1983 and is not subject to NSPS Subpart AA.

6.4.5 NSPS Subparts AAa and AAb

NSPS Subpart AAa, *Standards of Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels constructed after August 17, 1983*, applies to Electric Arc Furnaces (EAFs), argon-oxygen decarburization vessels, and dust handling systems in the steel industry which commenced construction, modification, or reconstruction after August 17, 1983. The proposed Project will contain affected facilities that are considered new and potentially subject to the requirements of NSPS Subpart AAb² in which case NSPS Subpart AAa would not apply to the proposed Project.

CMC will comply with potentially applicable requirements by (a) monitoring the opacity from the meltshop baghouse stack on a daily basis following Test Method 9 and (b) installing a bag leak detection system (BLDS) according to the specifications and work practices (i.e., developing a site-specific monitoring plan for the BLDS).

6.4.6 NSPS Subpart IIII

NSPS Subpart IIII, *Standards of Performance for Stationary Compression Ignition Internal Combustion Engines*, applies to owners/operators of stationary compression ignition (CI) internal combustion engines (ICE) for which construction commenced after July 11, 2005 and are manufactured as a certified National Fire Protection Association (NFPA) fire pump engine after July 1, 2006 [40 CFR §60.4200(a)(2)(ii)]. Fire pump engine is defined under 40 CFR §60.4219 as:

An emergency stationary internal combustion engine certified to NFPA requirements that is used to provide power to pump water for fire suppression or protection.

The proposed emergency fire water pump will utilize an NFPA certified fire pump engine and will have a manufacturer date and construction date after 2006. Thus, the proposed emergency generator and emergency fire water pump (i.e., emergency units) are subject to NSPS Subpart IIII.

As a fire pump engine with a displacement of less than 30 liters per cylinder the engine will comply with the emission standards in Table 4 of NSPS IIII, per 40 CFR §60.4205(c). Per 40 CFR §60.4206, CMC will ensure the fire pump engine meets these emission standards over the entire life of the unit. Additionally, per 40 CFR §60.4207(b), such engines must also comply with the diesel fuel standards listed in 40 CFR

² The EPA has proposed new NSPS Subpart AAb, *Standards of Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After May 16, 2022.*

§80.510(b), which requires the sulfur content of the diesel fuel to be less than or equal to 15 ppm. The engine will fire ULSD with a sulfur content of 0.0015%.

Per 40 CFR §60.4209(a), an emergency stationary CI internal combustion engine that does not meet the standards applicable to non-emergency engines must install a non-resettable hour meter prior to startup of the engine. Additionally, records of the engine's emergency and non-emergency operation would need to be maintained through this meter, per 40 CFR §60.4214(b). The proposed emergency units will be equipped with a non-resettable hour meter and comply with the recordkeeping requirements, as necessary.

Per 40 CFR §60.4211(a) and §60.4211(c), the engine must be operated and maintained in accordance with manufacturer's instructions and certified to the applicable emission standards. The proposed emergency units will utilize an EPA certified Tier 3 engine and will comply with these requirements. The emergency units will be limited to 50 hours of non-emergency use, which counts towards an overall limit of 100 hours per calendar year for testing and maintenance, as limited by 40 CFR §60.4211(f)(2) and 40 CFR §60.4211(f)(3). The emergency units will operate in accordance with the required operational limits.

CMC is subject to the aforementioned sections of NSPS Subpart IIII and will comply with all applicable requirements.

6.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) have been established in 40 CFR Part 61 and Part 63 to control emissions of HAPs from stationary sources. A facility that is a major source of HAPs is defined as having PTE emissions greater than 25 tpy of total HAPs and/or 10 tpy of a single HAP. Facilities with a potential to emit HAPs at an amount less than these major source (i.e., Title V) thresholds are otherwise considered an "area source".

The NESHAP allowable emission limits are most often established on the basis of a maximum achievable control technology (MACT) determination for the particular source. The NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act [CAA] §112(d)) or on a case-by-case basis (CAA §112(g)) for facilities not regulated as a specific industrial source type.

The proposed Project will be area source of HAPs as it will have potential HAP emissions less than the major source thresholds. The NESHAP subparts potentially applicable to the proposed Project are discussed in the following sections.

6.5.1 NESHAP Subpart A

All "affected sources" subject to a NESHAP Subpart are also subject to the applicable General Provisions of NESHAP Subpart A unless specifically excluded by a specific NESHAP Subpart. NESHAP Subpart A includes the following requirements for affected sources subject to a specific NESHAP Subpart:

- Initial construction/reconstruction notification;
- Initial startup notification;
- Performance tests;
- Performance test date initial notification;
- General monitoring requirements;
- General recordkeeping requirements; and
- Semi-annual monitoring system and/or excess emission reports.

Because the proposed Project will include an affected source subject to a specific NESHAP Subpart, the NESHAP Subpart A General Provisions will apply.

6.5.2 NESHAP Subpart Q

NESHAP Subpart Q, *National Emissions Standards for Hazardous Air Pollutants for Industrial Process Cooling Towers*, applies to all new and existing industrial process cooling towers that are operated with chromium-based water treatment chemicals and are either major sources of HAPs or are integral parts of facilities that are major sources of HAP. The proposed Project will not use any chromium-based water treatment chemicals in the proposed cooling towers and is not expected to be a major source of HAPs. As such, NESHAP Subpart Q does not apply.

6.5.3 NESHSP Subpart CCC

NESHAP Subpart CCC, *National Emission Standards for Hazardous Air Pollutants for Steel Pickling - HCl Process Facilities and Hydrochloric Acid Regeneration Plants*, applies to (a) all new and existing steel pickling facilities that pickle carbon steel using hydrochloric acid solution that contains 6% or more by weight HCl and is at a temperature of 100 °F or higher and (b) all new or existing hydrochloric acid regeneration plants that are considered major sources for HAP. Because the proposed Project will not conduct pickling, and the proposed Project is an area source, NESHAP Subpart CCC is not applicable.

6.5.4 NESHAP Subpart ZZZZ

NESHAP Subpart ZZZZ, *National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines*, applies to stationary reciprocating internal combustion engines (RICE) at major and area sources of HAPs. Per 40 CFR §63.6590(a)(2)(ii), a stationary RICE at an area source of HAPs is new if construction commenced after June 12, 2006. Thus, the proposed emergency units are considered a new stationary RICE under NESHAP Subpart ZZZZ. Per 40 CFR §63.6590(c), certain affected sources demonstrate compliance with NESHAP Subpart ZZZZ by satisfying the requirements of NSPS Subpart IIII. The proposed emergency units are new stationary RICE located at an area source, as described in 40 CFR §63.6590(c)(1). Thus, compliance with NESHAP Subpart ZZZZ is maintained by compliance with NSPS Subpart IIII.

6.5.5 NESHAP Subpart DDDDD

NESHAP Subpart DDDDD, *National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters*, applies to owners or operators of industrial, commercial, or institutional boilers or process heaters as defined in 40 CFR 63.7575 that are located at a major source of HAP. Because the proposed Project is an area source of HAPs, NESHAP Subpart DDDDD does not apply.

6.5.6 NESHAP Subpart EEEEE

NESHAP Subpart EEEEE, *National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries*, applies to iron and steel foundries which are considered a major source for HAP. Because the proposed Project is in an area source of HAPs, NESHAP Subpart EEEEE does not apply.

6.5.7 NESHAP Subpart FFFFF

NESHAP Subpart FFFFF, *National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel Manufacturing Facilities*, applies to integrated iron and steel manufacturing facilities which are considered a major source for HAP. As defined in 40 CFR 63.7852, an integrated iron and steel manufacturing facility means an establishment engaged in the production of steel from iron ore. The proposed Project will process scrap metal rather than iron ore and is not considered an integrated iron and steel manufacturing facility. Additionally, because the proposed Project is an area source of HAPs, NESHAP Subpart FFFFF does not apply.

6.5.8 NESHAP Subpart JJJJJJ

NESHAP Subpart JJJJJJ, *National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources*, applies to operators of industrial, commercial, and institutional boilers located at area sources of HAPs. Pursuant to 40 CFR 63.11237, a boiler is defined as an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water. CMC is not proposing installation of any boilers as a part of the proposed Project. As such, NESHAP Subpart JJJJJJ is not applicable to any units associated with the proposed Project.

6.5.9 NESHAP Subpart YYYYY

NESHAP Subpart YYYYY, *National Emission Standards for Hazardous Air Pollutants for Area Sources: Electric Arc Furnace Steelmaking Facilities*, applies to any owner or operator of an EAF steelmaking facility that is an area source for HAP emissions. Per 40 CFR 63.10692, an EAF steelmaking facility is defined as follows:

Electric arc furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels using an EAF. The definition excludes EAF steelmaking facilities at steel foundries and EAF facilities used to produce nonferrous metals.

The proposed Project will produce carbon, alloy, or specialty steels using an EAF and will not be located at a steel foundry. As a result, the proposed Project will be subject to NESHAP Subpart YYYYY requirements.

To reduce the amount of chlorinated plastics, lead, and free organic liquids entering the EAF, NESHAP Subpart YYYYY requires that CMC comply with one of two options listed below:

- 1. Prepare and implement a pollution prevention plan (PPP) meeting the requirements stipulated in 40 CFR 63.10685(a)(1) for materials that are charged to the furnace. The PPP must be submitted to and approved by WVDEP, OR
- 2. Restrict metallic scrap that authorized to be charged to the EAF per the requirements of 40 CFR 63.10685(a)(2).

To reduce the amount of mercury from motor vehicle scrap entering the EAF, NESHAP Subpart YYYYY requires that CMC comply with one of three options listed below:

1. Prepare and implement a site-specific plan for removing mercury switches from vehicle bodies meeting the requirements stipulated in 40 CFR 63.10685(b)(1). The plan must be submitted to and approved by WVDEP, OR

- Participate in a program for removal of mercury switches (such as National Vehicle Mercury Switch Recovery Program or the Vehicle Switch Recovery Program) per the requirements of 40 CFR 63.10685(b)(2). It is acceptable for CMC to participate in the aforementioned programs or for CMC to contract with scrap providers or brokers that participate in the programs, OR
- 3. Accept only materials from material vehicles that is not reasonably expected to contain mercury switches.

Per 40 CFR 63.10685(b)(4), CMC will also document when scrap is accepted that is not from motor vehicles.

For facilities with a production capacity greater than or equal to 150,000 tons per year of stainless or specialty steel, the EAF control device (i.e., the Meltshop Baghouse) is prohibited from discharging to the atmosphere emissions in excess of 0.0052 gr/dscf.³ Additionally, emissions that leave the Meltshop (i.e., via the Caster Vent), which are solely generated by the EAF, are limited to 6% opacity.⁴

CMC will comply with the monitoring, recordkeeping, and reporting requirements provided in 40 CFR 63.10685, 63.10686, and 63.10690.

6.5.10 NESHAP Subpart ZZZZZ

NESHAP Subpart ZZZZ, *National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources,* applies to new and existing iron and steel foundries that are considered an area source for HAP. As defined in 40 CFR 63.10906, an iron or steel foundry is a facility or portion of a facility that melts scrap, ingot, and/or other forms of iron and/or steel and pours the resulting molten metal into molds to produce final or near final shape products for introduction into commerce. The proposed Project is not considered an iron or steel foundry and is not subject to NESHAP Subpart ZZZZZ.⁵

6.6 Compliance Assurance Monitoring

The Compliance Assurance Monitoring (CAM) Rule under 40 CFR Part 64 applies to each pollutant specific emission unit that satisfies all of the following criteria:

- 1. Is subject to an emission limitation or standard for the applicable regulated air pollutant;
- 2. Uses a control device to achieve compliance with any such emission limitation or standard;
- 3. Has potential pre-control emissions of the applicable regulated air pollutant that are equal to or greater than the applicable major source threshold; and
- 4. Is not otherwise exempt.

As defined in 40 CFR Part 64.1, control device means equipment, other than inherent process equipment, that is used to destroy or remove air pollutant(s) prior to discharge to the atmosphere. This does not include passive methods such as lids, seals, or inherent process equipment provided for safety or material recovery.

³ 40 CFR 63.10686(b)(1)

⁴ 40 CFR 63.10686(b)(2)

⁵ Per Federal Register, Volume 73, Number 1, January 2, 2008. NESHAP ZZZZ encompasses the following NAICS codes: 331511, 331512, 331513. The proposed facility will have a NAICS code of 331210. As such, it is not considered an iron or steel foundry.

The primary emission unit that is part of the proposed Project and that will have a control device installed is the EAF, controlled by the Meltshop Baghouse.

Per 40 CFR Part 64.5, owners or operators of pollutant-specific emission units (PSEUs) that meet the above criteria are required to submit information at different deadlines depending on the controlled potential to emit. Large PSEUs subject to the CAM Rule are required to submit the information required under this rule as a part of an initial application for a Title V Permit or a significant permit revision to a Title V Permit (but only for the PSEUs for which the proposed permit revision applies). As defined in 40 CFR 64.5, large PSEU means each PSEU with the PTE (taking into account control devices) of the applicable regulated air pollutant in an amount equal to or greater than 100% of the amount, in tons per year, required for a source to be classified as a major source. Other PSEUs subject to the CAM Rule are required to submit the information required under this rule as a part of an application for renewal of a Title V Permit. The meltshop baghouse (BH1) is considered a large PSEU as PM₁₀ and PM_{2.5} emissions exceed major source threshold post control, and is subject to the requirements of NESHAP Part 63, Subpart YYYYY (opacity standard of 3% and PM limit of 0.0052 gr/dscf).

Pursuant to EPA guidance⁶, for "large PSEUs", CAM requires the collection of four or more data values equally spaced over each hour and average the values, as applicable, over the applicable averaging period. The proposed baghouse BLDS required as part of applicable requirements meets this data frequency requirement. Therefore, CMC proposes CAM elements consistent with the BLDS requirements in NSPS Subpart AAb.

6.7 Chemical Accident Prevention

Subpart B of 40 CFR Part 68 outlines requirements for risk management prevention (RMP) plans pursuant to CAA Section 112(r). Applicability of this subpart is determined based on the type and quantity of the chemicals stored at the proposed Project. The list of regulated substances does not include ultra-low sulfur diesel fuel, propane, kerosene or gasoline, which will be stored on-site. The proposed Project will not store any non-exempt RMP chemicals in quantities greater than the RMP trigger thresholds. Therefore, the requirements of 40 CFR Part 68 are not applicable. However, the proposed Project will be subject to the provisions of the CAA General Duty Clause, Section 112, as it pertains to accidental releases of hazardous materials.

6.8 Stratospheric Ozone Protection Regulations

The requirements originating from Title VI of the Clean Air Act, Protection of Stratospheric Ozone, are contained in 40 CFR Part 82. Subparts A through E, Subpart G, Subpart H, and Subpart and I of 40 CFR Part 82 will not be applicable to CMC. 40 CFR Part 82 Subpart F, Recycling and Emissions Reduction, potentially applies if the facility maintains, repairs, services, or disposes of appliances that utilize Class I or Class II ozone depleting substances. Subpart F generally requires persons completing the repairs, service, or disposal to be properly certified. An appropriately certified technician will complete all repairs, service, and disposal of ozone depleting substances from the comfort cooling components at the proposed Project.

6.9 West Virginia Administrative Code

The proposed Project will be subject to certain CSR regulations. Potentially applicable rules are discussed in the sections below.

⁶ Per EPA Technical Guidance Document: Compliance Assurance Monitoring, dated August 1998, revised 2005.

6.9.1 45CSR2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45CSR2 "establishes emission limitations for smoke and particulate matter which are discharged from fuel burning units." A fuel burning unit is defined under 45CSR2 as any "furnace, boiler apparatus, device, mechanism, stack or structure used in the process of burning fuel or other combustible material for the primary purpose of producing heat or power by indirect heat transfer." Additionally, the definition of "indirect heat exchanger" specifically excludes process heaters, which are defined as "a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst." The proposed direct-fired combustion units associated with the proposed Project meet the definition of "process heater" and therefore 45CSR2 does not apply to the proposed Project.

6.9.2 45CSR7: To Prevent and Control Particulate Air Pollution from Manufacturing Process Operations

45CSR7 has requirements to prevent and control particulate matter air pollution from manufacturing processes and associated operations. Pursuant to §45-7-2.20, a "manufacturing process" means "any action, operation or treatment, embracing chemical, industrial or manufacturing efforts that may emit smoke, particulate matter or gaseous matter." 45CSR7 has three substantive requirements potentially applicable to the particulate matter-emitting operations at the proposed Project further discussed below.

6.9.2.1 45CSR7 Opacity Standards - Section 3

§45-7-3.1 sets an opacity limit of 20% on all "process source operations." Pursuant to §45-6-2.38, a "source operation" is defined as the "last operation in a manufacturing process preceding the emission of air contaminants [in] which [the] operation results in the separation of air contaminants from the process materials or in the conversion of the process materials into air contaminants and is not an air pollution abatement operation." This language would define all particulate matter emitting sources (excluding combustion exhaust sources and emergency engines) as "source operations" under 45CSR7 and, therefore, these sources would be subject to the opacity limit (after any applicable control device).

6.9.2.2 45CSR7 Weight Emission Standards - Section 4

§45-7-4.1 requires that each manufacturing process source operation or duplicate source operation meet a maximum allowable "stack" particulate matter limit based on the weight of material processed through the source operation. As the limit is defined as a "stack" limit (under Table 45-7A), the only applicable emission units (defined as a type 'a' sources) are those that can be defined as non-fugitive in nature. Pursuant to §45-7-4.1, any manufacturing process that has "a potential to emit less than one (1) pound per hour of particulate matter and an aggregate of less than one thousand (1000) pounds per year for all such sources of particulate matter located at the stationary source" is exempt from Section 4.1. For the purposes of Section 4.1, a source of particulate matter emissions that are solely the result of the combustion of a fuel source such as propane, natural gas, or diesel is not considered a "source operation" as defined under §45-7-2.38. This is based on the definition that states a source operation is one that "result in the separation of air contaminants from the process materials or in the conversion of the process materials into air contaminants." Propane, natural gas, or diesel when solely a fuel do not meet the reasonable definition of a process material. Additionally, the particulate matter limits given under 45CSR7 only address filterable particulate matter. Table 6-2 demonstrates 45CSR7 compliance.

Emission Unit ID	Emission Point ID	Source Type	Aggregate PWR (lb/hr)	Table 45-7A Limit ¹ (lb/hr)	PTE (lb/hr)
EAF1	BH1	В	234,000	19.01	10.36
EAF1	CV1	В	234,000	19.01	1.12

1. These sources, for a conservative compliance demonstration, are considered "duplicate sources "as defined in 45CSR7. As such, the PWR of all duplicate sources are aggregated and the resulting limit is distributed to each emission point relative to each source's contribution to total PWR.

6.9.2.3 45CSR7 Fugitive Emissions - Section 5

Pursuant to §45-7-5.1 and 5.2, each manufacturing process or storage structure generating fugitive particulate matter must include a system to minimize the emissions of fugitive particulate matter. The proposed Project will utilize BACT-level controls (where reasonable) on material transfer points, watering on the haul roads, and partial or full enclosure of some on-storage pile activity to minimize the emissions of fugitive particulate matter.

6.9.3 45CSR10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The purpose of 45CSR10 is to prevent and control air pollution from the emission of sulfur oxides from "fuel burning units" by limiting in-stack SO_2 concentrations of "manufacturing process source operations," and limiting H₂S concentrations in "process gas" streams that are combusted. Pursuant to §45-10-2.8, fuel burning units include "any furnace, boiler apparatus, device, mechanism, stack or structure used in the process of burning fuel or other combustible material for the primary purpose of producing heat or power by indirect heat transfer." The proposed Project units will be direct-fired and therefore do not meet the definition of fuel burning unit.

The EAF meets the definition of a manufacturing process and must also comply with the requirements of 45CSR10. 45CSR10-4.1 prohibits the emission of process gases exceeding 2,000 parts per million by weight (ppmv) SO₂. The EAF baghouse stack will not contain gases in excess of 2,000 ppmv based on the following demonstration:

40CFR10 SO ₂ Standard	= 2,000 ppmv
SO ₂ Molecular Weight	= 64 lb/lbmol
 Universal Gas Constant 	= 0.73 (atm·ft ³)/(lbmol.R)
 Baghouse Exhaust Temperature 	= 176 deg F, or 636 deg R
Allowable SO ₂ Emission Rate	= 0.00028 lb/ft ³
 Baghouse Exhaust Flowrate 	= 788,000 acfm
40CFR10 SO ₂ Max Allowable Emission Rate	= 13,042 lb/hr
 Proposed Short-Term Emission Rate 	= 49.14 lb/hr

6.9.4 45CSR13: Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation

The proposed Project site-wide potential to emit a regulated pollutant is in excess of six (6) lbs/hr and ten (10) tpy and, therefore, pursuant to §45-13-2.24, the proposed Project is defined as a "stationary source" under 45CSR13. The proposed Project is also defined as a "major stationary source" under 45CSR14. This permit application is being submitted to satisfy the requirements of both 45CSR13 and 45CSR14.

6.9.5 45CSR14: Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

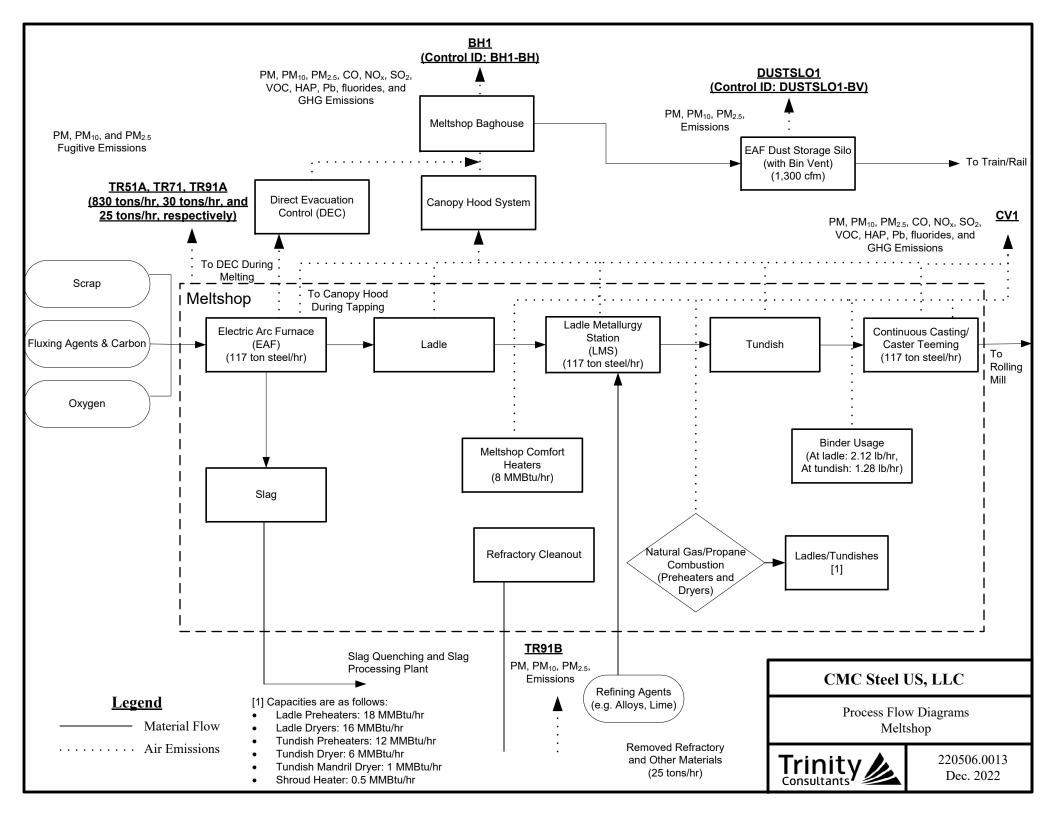
This rule, which outlines PSD permitting processes, is applicable to the proposed Project. See Section 6.1 above for the detailed applicability determination for this rule. CMC is submitting this permit application to satisfy the requirements of 45CSR14. As summarized in Table 6-1, PSD review is required for all PSD pollutants contained in the table except lead. The substantive requirements of a PSD review includes a BACT analysis, an air dispersion modeling analysis (for applicable pollutants), a review of potential impacts on Federal Class I areas, and an additional impacts analysis.

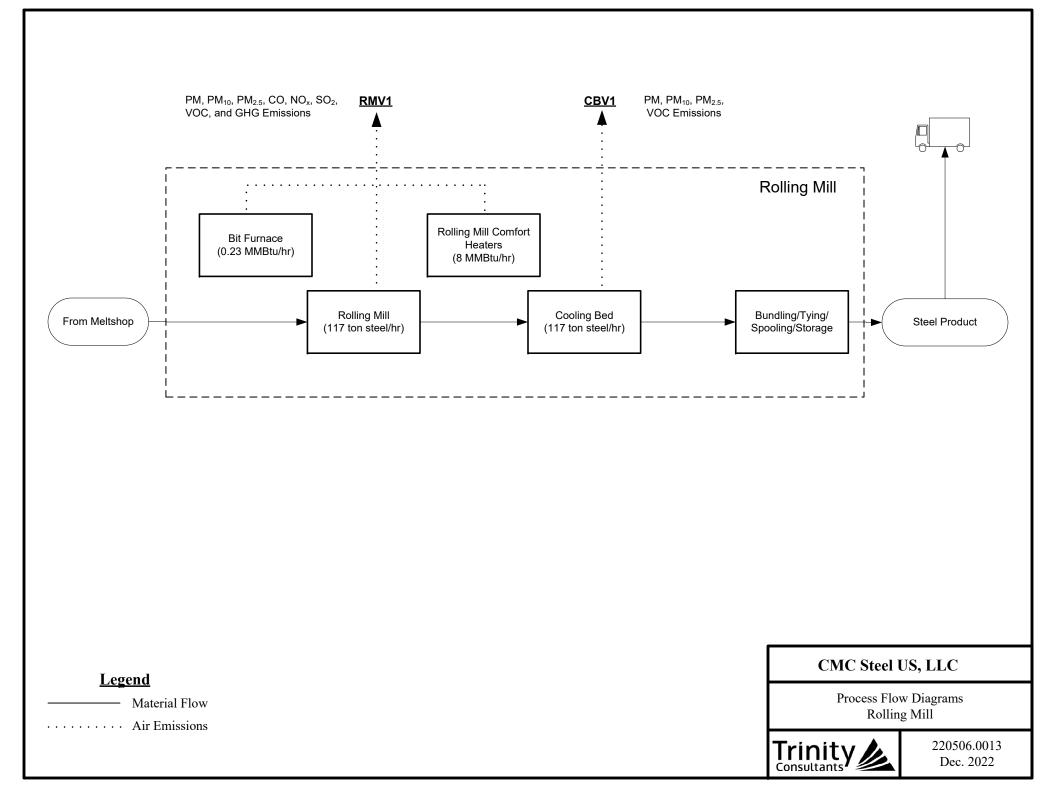
6.9.6 45CSR16 – Standards of Performance for New Stationary Sources

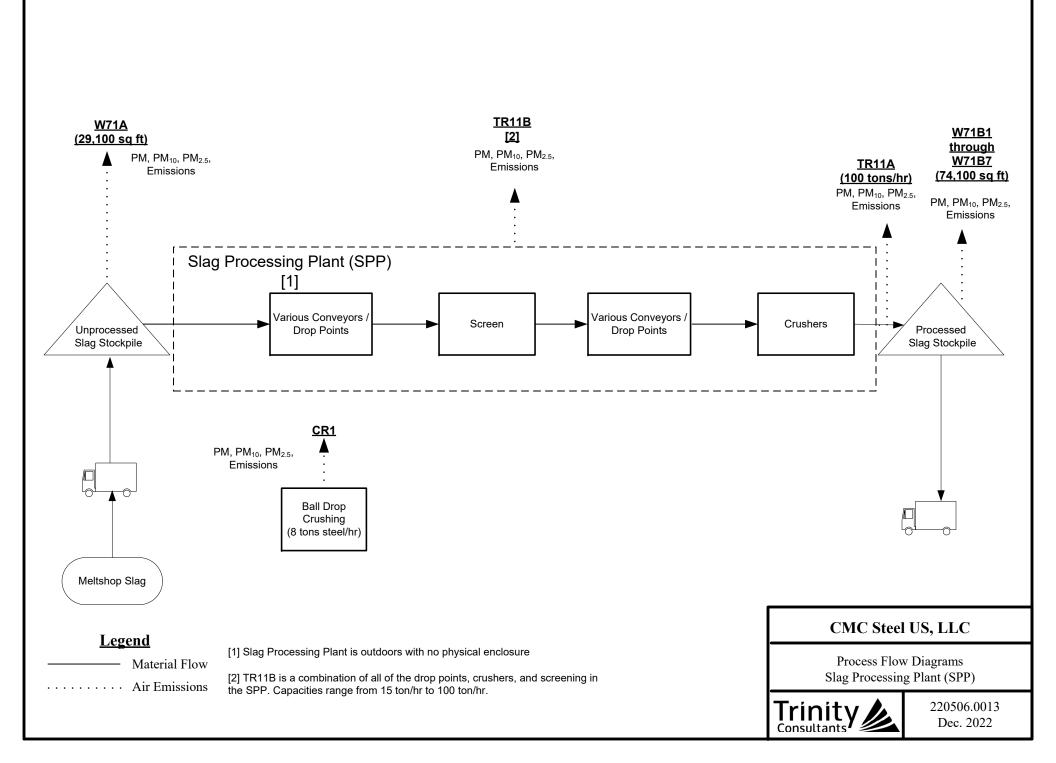
The provisions of 45CSR16 incorporate by reference the NSPS standards contained in 40 CFR 60. Please see Section 6.4 above for a list of NSPS for which the proposed Project is potentially subject.

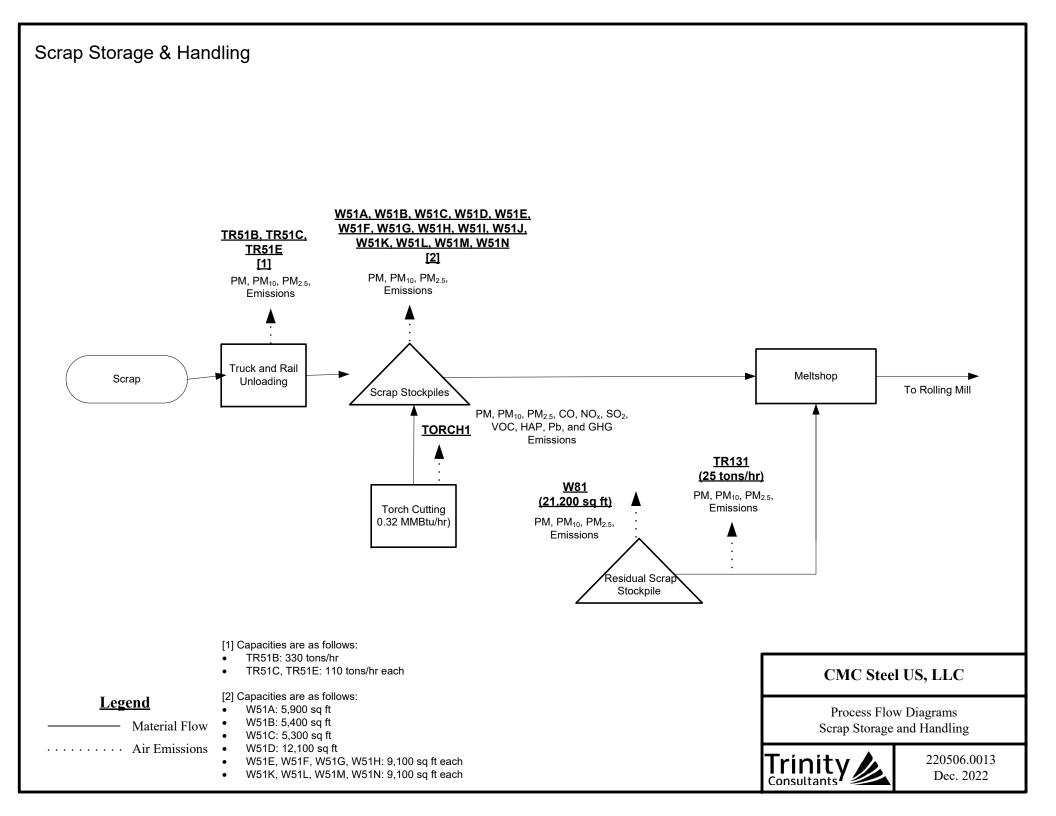
6.9.7 45CSR30 - Requirements for Operating Permits

As discussed in Section 6.3 of this application, the proposed Project will be subject to the requirements under 45CSR30. CMC will submit a Title V permit application within twelve (12) months after commencing operation to satisfy the requirements of 45CSR30.

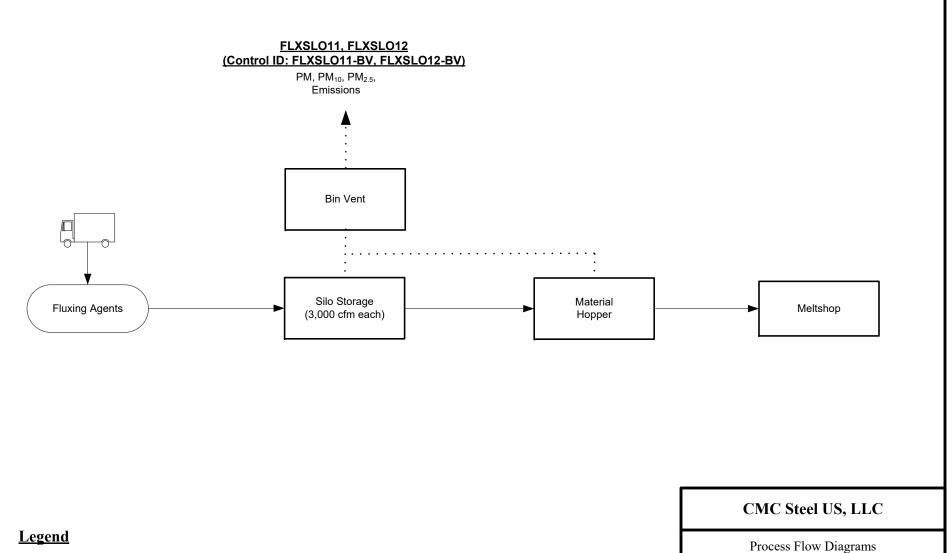

6.9.8 45CSR34 – Emission Standards for Hazardous Air Pollutants

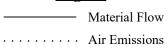

The provisions of 45CSR34 incorporate by reference the MACT/GACT standards contained in 40 CFR 63. Please see Section 6.5 above for a list of MACT/GACT standards to which the proposed Project is potentially subject.

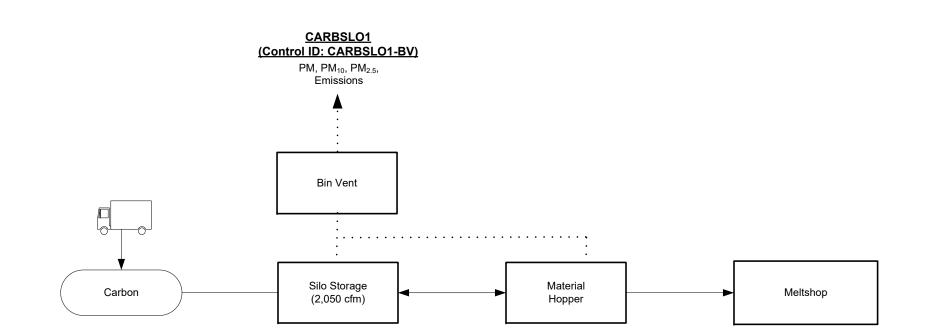

7. ATTACHMENT E: PLOT PLAN


CMC will submit detailed proposed Project plot plans as part of the PSD air dispersion modeling report to be provided under separate cover.

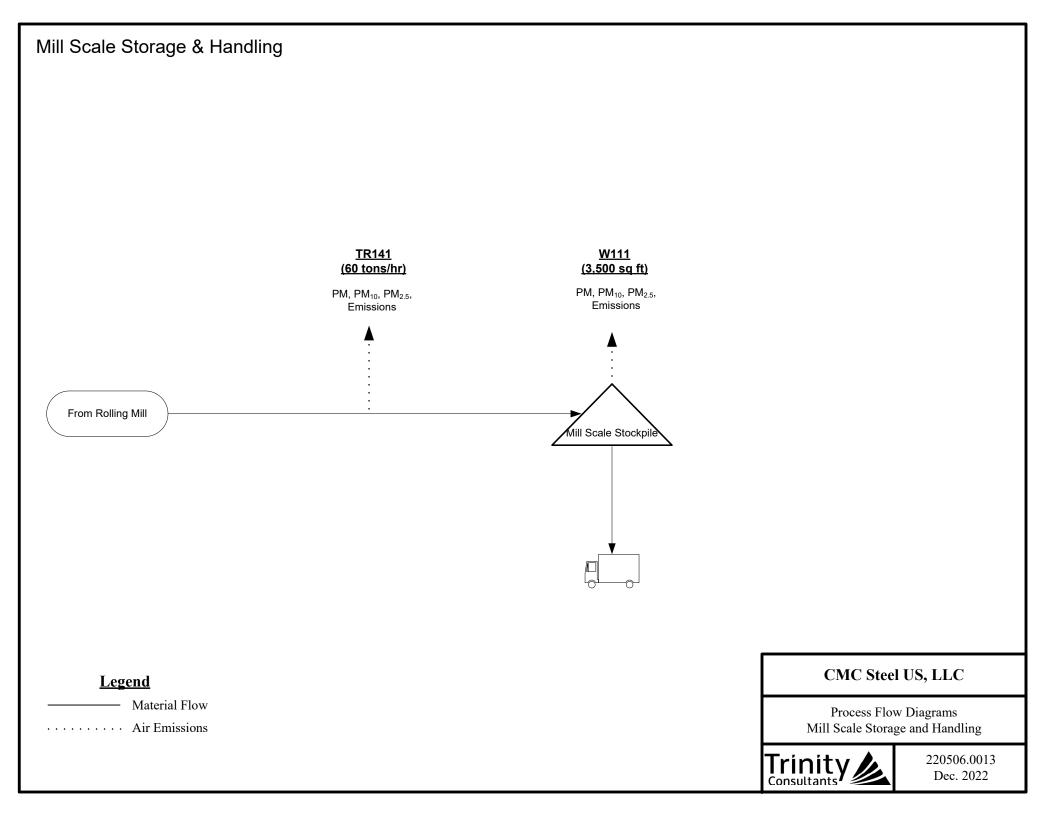
8. ATTACHMENT F: DETAILED PROCESS FLOW DIAGRAMS

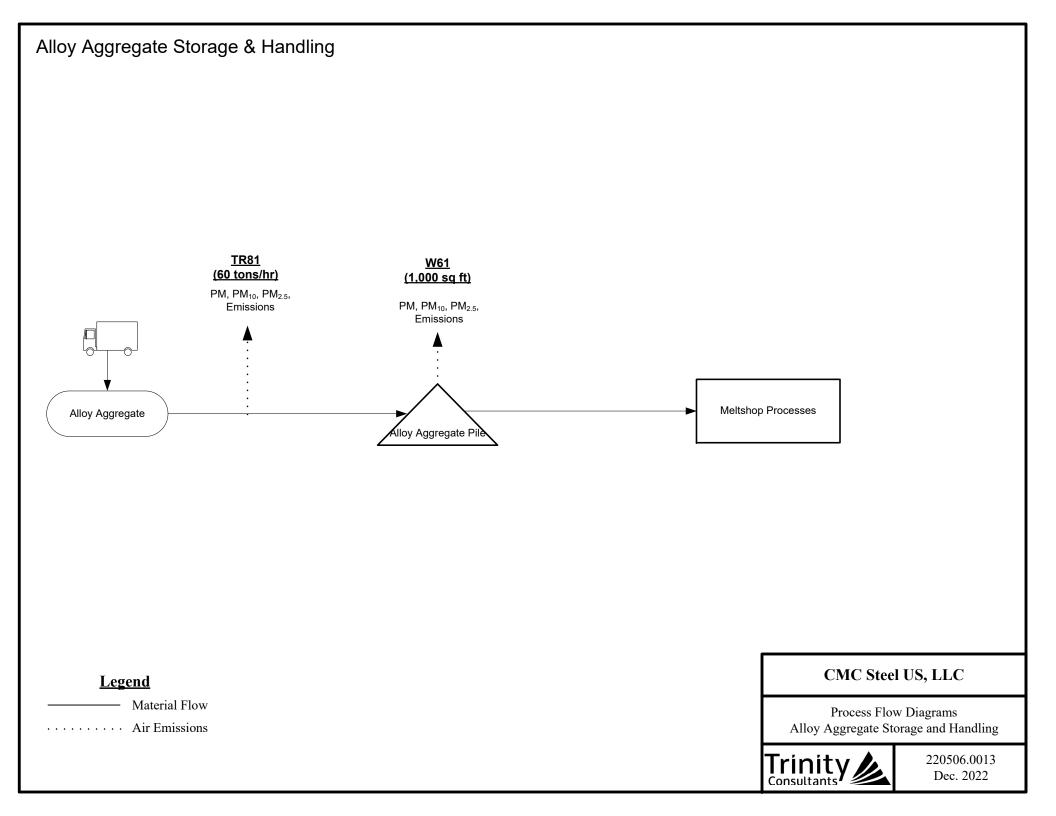


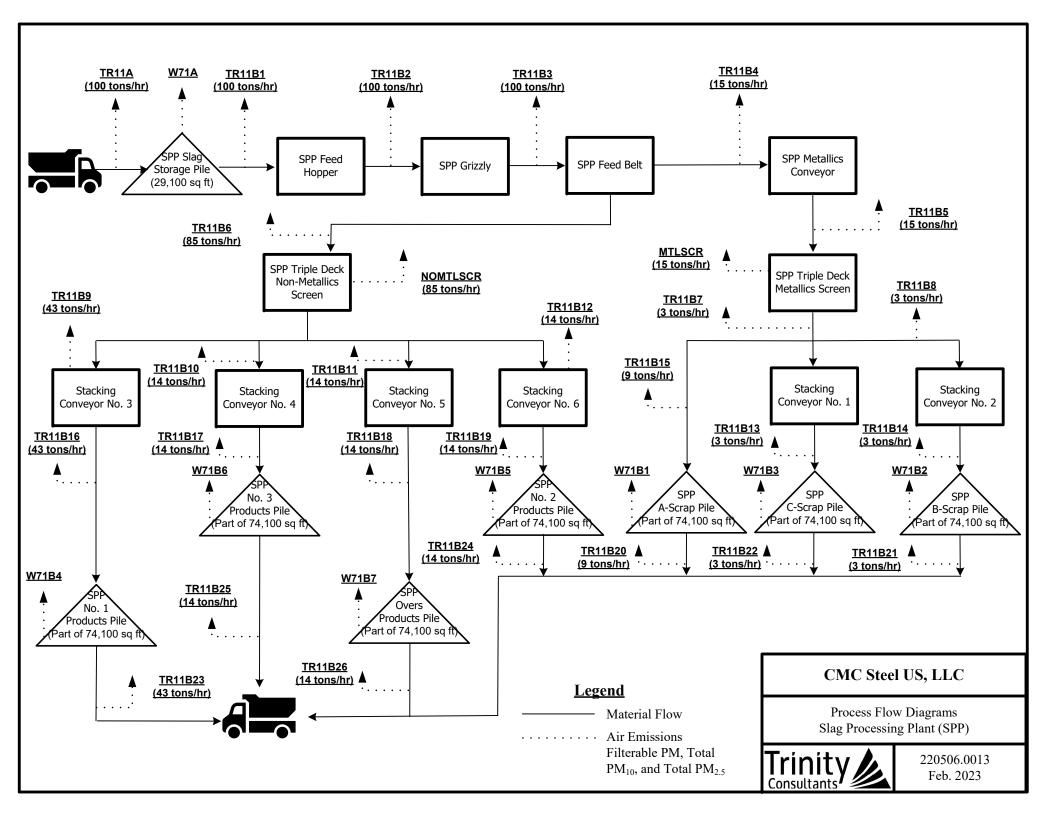


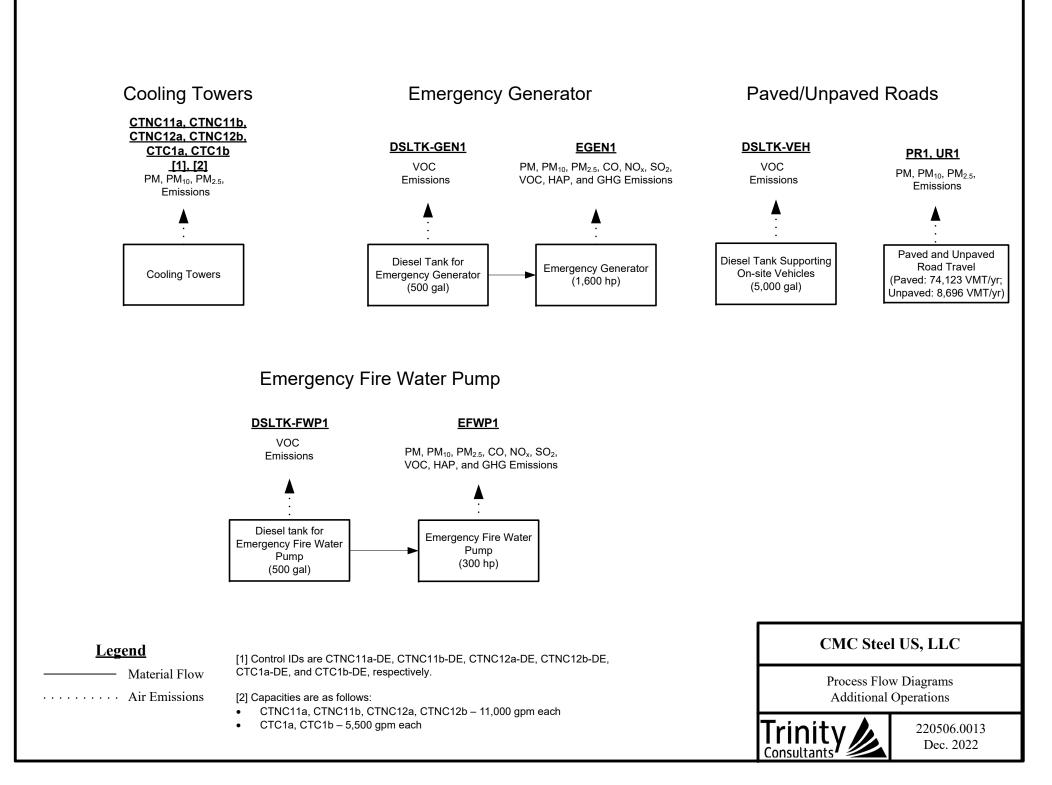

Fluxing Agent Storage and Handling

Trinity Consultants 220506.0013


Dec. 2022

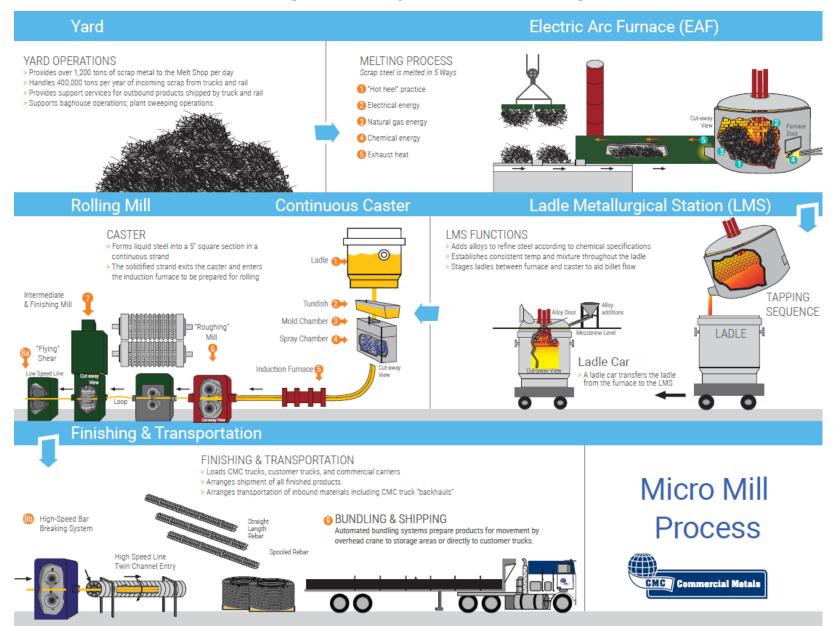






9. ATTACHMENT G: PROCESS DESCRIPTION

CMC proposes to construct and operate a new micro mill with associated support operations to produce long steel products at a maximum production rate of 650,000 tpy and 117 tons per hour (tph) (the Project). CMC plans to begin construction of the Project as soon as possible after issuance of the requested permit. Figure 9-1 contains a depiction of an example micro-mill process. The following subsections provide additional detail on the equipment and emission units to be constructed and operated at the proposed micro mill.


9.1 Raw Material Storage and Handling

Recycled scrap metal for the new micro mill will be purchased from outside suppliers and transported into the Facility by trucks or railcars. Scrap metal to be received will include un-shredded and shredded scrap largely from crushed automobiles but also may include old appliances, machinery, sheet metal, rectangular bundles, and miscellaneous scrap metal. Un-shredded scrap metal will arrive in a form either suitable for direct use in the steelmaking process or in larger sizes that will require cutting by torch cutters prior to use in the process. The scrap metal will be either stored at the proposed scrap bay, or if the proposed scrap bay is full, it will be stored at the proposed scrap storage piles and then moved into the proposed scrap bay. Once the scrap metal is inside the proposed scrap bay, cranes are used to load it onto the electric arc furnace (EAF) conveyor feed system (i.e., the endless charging system (ECS)). The EAF is expected to have an average electrical power input rating of 30 MW and a peak electrical demand of approximately 36 MW. The expected average power consumption of the EAF is approximately 18.0 MWH.

In addition to the proposed recycled scrap metal, the new micro mill will use raw materials in the steelmaking process, including carbon (such as, but not limited to, coal, petroleum coke, etc.) and fluxing agents (such as, but not limited to, dolomitic lime, high cal lime, spar, etc.). The carbon and fluxing agents will be delivered to the micro mill by truck or rail and moved into storage silos (one carbon silo and two fluxing agents silo, each with a capacity of 250 tons). The carbon and fluxing agents will be pneumatically transferred from these silos to the proposed EAF and proposed ladle metallurgy station (LMS), as needed. The carbon and fluxing agent silos will be equipped with a fabric filter bin vents.

Alloy aggregates will also be used in the proposed EAF and LMS for refining steel metallurgy. Alloys will be transported by truck or rail to the plant in aggregate form and unloaded into storage piles. The alloys will be transferred by front-end loaders, forklift, or manually to the meltshop for use in the proposed EAF or LMS as needed. Alloy aggregates may include, but are not limited to, the following. Note that carbon, fluxing agent, alloy aggregates to be at any time will vary based on cost, availability, and other supply chain challenges.

- ► Manganese ferroalloys (FeMn and/or SiMn).
- ► Iron monosilicide (FeSi).
- ► Ferrochrome (FeCr).
- ▶ Iron-molybdenum (FeMo).
- ► Ferrovanadium (FeV).

Figure 9-1. Example Micro Mill Process Diagram

9.2 Meltshop

The proposed micro mill will include a meltshop that consists of the EAF; LMS; casting operations; ladle and tundish preheat burners; and refractory repair. Scrap metal is fed into the EAF where it is melted and transferred to the LMS via a ladle. The main emission control device for these proposed operations is the meltshop baghouse, which captures emissions primarily from the EAF and LMS, as well as some of the emissions from the casting operations; ladle and tundish preheat burners; and refractory repair via the canopy hood. Emissions not captured by the meltshop baghouse or canopy hood are emitted through the caster vent. The following subsections describe each process that occurs in the proposed meltshop. For purposes of this application, it is conservatively assumed that all fugitive EAF and LMS releases as well as all releases from the casting operations and ladle and tundish preheat burners are vented through the caster vent without the benefit of any baghouse control.

9.2.1 Electric Arc Furnace (EAF)

The steelmaking process begins with scrap metal being transported to the scrap bay to the EAF as discussed above. During the first use of the EAF after downtime, and at other times due to operational considerations, loading of scrap metal will be accomplished using charge buckets, which are transported into position over the EAF using overhead cranes. Once in position, the charge bucket bottom will open, allowing scrap to fill the EAF. After the first heat of molten steel is made, scrap for subsequent heats will be fed to the EAF using a continuous conveyor (i.e., ECS). The conveyor system will allow the continuous feeding of scrap metal to the EAF without opening the furnace, which will result in considerable energy savings. In addition, the section of the ECS closest to the EAF will be enclosed to allow for pre-heating of the scrap metal using the off-gas from the EAF.

While traditional EAFs utilize oxyfuel burners to heat scrap that is piled up inside the EAF to the roof in combination with injectors, ECS EAFs use only injectors. The two injectors for the proposed EAF will utilize natural gas to create a flame "shroud" in order to improve the effectiveness of the injected oxygen, as needed. During a cold startup (which is expected to occur once per week as part of scheduled maintenance), the charge scrap is deposited in the EAF and electrical power will be applied to induce arcing that will increase the temperature of the scrap to beyond the steel melting point. As the scrap melts, the injectors inject oxygen protected by the natural gas "shroud". After the startup sequence that uses electrical energy, the operation will be similar or same as a normal heat and will utilize the injectors to inject oxygen. Oxygen will be supplied to the EAF using either on-site liquid oxygen or produced on-site by an air separation unit.

A direct evacuation control (DEC) system or a canopy hood will capture the EAF emissions and vent the emissions through a large duct to the meltshop baghouse. Off-gasses not captured by the DEC or canopy hood can be released from the meltshop openings and doors as well as the caster vent. Due to the elevated temperature of such fugitive releases, it is expected that the majority will be released from the caster vent and a de minims amount from the meltshop openings and doors. For purposes of this application, it is conservatively assumed that all fugitive releases will be vented from the caster vent.

During the melting and refining processes that will take place in the EAF and the LMS, raw materials such as fluxing agents, coal or coke, and oxygen will be added to the molten steel in order to achieve the desired product chemistry and properties and promote the formation of slag (a product of steelmaking, and is a complex solution of silicates and oxides that solidifies upon cooling). Once the desired steel properties are reached in the EAF, the molten steel is poured (i.e., "tapped") into a refractory-lined transport vessel referred to as a ladle. The molten steel is then transferred to the LMS via a ladle car. The slag formed in the EAF will be emptied by tipping the EAF to the side and allowing the hot slag to be poured into a pile within the meltshop building. The slag will be subsequently removed from the pit using a front-end loader, cooled or quenched, and transported to an outdoor storage pile before being processed on-site.

A hot heel, a small amount of liquid steel, is typically left in the EAF between heats to aid in the processing of the feed materials for the subsequent heat. If the EAF is shutdown no heel is kept in the EAF but rather continues through the steel making process.

9.2.2 Ladle Metallurgy Station (LMS)

The ladles filled with molten steel will be transferred from the EAF to the LMS via the ladle car. At the LMS, the steel will be subjected to additional heating by electrical energy from electrodes in order to maintain its molten state. The molten steel will be further refined with the injection and mixing of raw materials such as fluxing agents, carbon, and alloys into the molten steel. Once the molten steel reaches the desired temperature and composition (dependent on the physical properties of the desired product), the ladle of molten steel is transported to the continuous casting machine.

Emissions from the LMS will be captured by the ladle hood (which is a direct evacuation device) connected to the meltshop baghouse. Emissions not captured by the ladle hood or meltshop canopy will be emitted through the caster vent.

9.2.3 Casting Operations

After reaching the desired temperature of approximately 3,000 °F and composition in the LMS, the ladle is transported to a continuous casting machine. During casting, steel flows out of the bottom of the ladle via a slide gate into a tundish. A tundish is a holding vessel used to ensure continuous casting while ladles are switched out. Emissions from the process will be emitted through the caster vent. Note that the steel is drained out of the bottom of the ladle into the tundish until the ladle is nearly empty. A small volume of residual steel remains in the ladle and is removed (also known as "skulls") and processed for recovery. Additionally, steel is drained out of the bottom of the bottom of the tundish into the casting machine until the tundish is nearly emptied of steel. Slag with some residual steel that may remain in the tundish (also known as "skulls") is removed and processed for recovery.

From the tundish, the steel flows into a single mold at the casting machine. In the mold, the steel is watercooled and formed into bars, referred to as billets.

9.2.4 Ladle and Tundish Preheat Burners

Refractory materials will line the ladles and tundishes which must be dried completely prior to steel production. Additionally, the ladles and tundishes must be preheated prior to the transfer of molten steel in order to prevent heat losses. Nine natural gas or propane-fired burners⁷ will be used to preheat the ladles and tundishes as follows. These combustion sources will vent emissions inside the meltshop.

- Three 6.0 MMBtu/hr each ladle preheaters;
- Two 8.0 MMBtu/hr each ladle dryers;
- Two 6.0 MMBtu/hr each tundish preheaters;

⁷ Site combustion sources will utilize propane or natural gas.

- One 6.0 MMBtu/hr tundish dryer;
- One 1.0 MMBtu/hr tundish mandril dryer; and
- One 0.5 MMBtu/hr shroud heater.

Combustion emissions generated during preheating and drying of the ladles and tundishes will be captured by the canopy hood and routed to the baghouse or released at the caster vent. For purposes of this application, it is conservatively assumed that all combustion emissions are vented through the caster vent without the benefit of any baghouse control.

9.2.5 Refractory Repair

Refractory is made up of a layer of bricks and will be used in the EAF, ladles, and tundishes. For the EAF, the refractory will be changed periodically. For the ladles and tundishes, occasional refractory repairs and replacements will also be required. This will involve the use of organic binding agents (binder) to hold the refractory bricks in place. Emissions from the curing of the binder at the ladle and tundish dryers will be routed to the caster vent. When the refractory is replaced or repaired, spent refractory will be recycled or disposed of, along with other various wastes generated in the steel production process.

9.2.6 Meltshop Baghouse

Emissions captured in the meltshop are vented to the meltshop baghouse. Dust collected by the meltshop baghouse will be transferred to a dust silo (with a capacity of approximately 190 tons) controlled with a bin vent filter. The dust will then be shipped off-site by either railcar or truck for recycling.

9.3 Rolling Mill

After continuous casting the steel is conveyed through a series of rolling stands that reduce the cross-sectional area and hot-form final rolled steel shapes such as reinforcing bar. Note that the rolling process is wet (water is continuously applied at the rolling stands) and is expected to generate a minimal amount of particulate matter emissions. A 0.225 MMBtu/hr natural gas or propane-fired "bit furnace"⁸ is used to heat sample bars (or bits) and run them through a pass to check size prior to rolling. The rolled steel that exits the rolling mill is water quenched, or cooled on natural convection cooling beds, and is then either spooled or sheared to length. Steel products are then bundled and stored. Note that the vents above the rolling mill and cooling beds are primarily for purposes of heat evacuation. Mill scale, which is a type of iron oxide that is formed on the surface of the steel during the rolling process, is removed using water.

9.4 Cooling Beds

The products that exit the rolling mill are directed to the cooling beds. The products will either first receive an initial water quench or be moved directly along the length of the bed, without this initial quench, allowing time and space to cool in the ambient air. Some of the products may be diverted to coil forming machines where the rolled steel is formed into a spool as it cools.

9.5 Finishing and Transportation

After the products have cooled, automated bundling systems will prepare un-spooled products. Overhead cranes or forklifts will transport materials to storage areas or directly to customer trucks or railcars.

⁸ Site combustion sources will utilize propane or natural gas.

9.6 Spooler

Spools of steel rebar are one of the finished products to be manufactured at the proposed Project. Note that the vent above the spooler is primarily for purposes of heat evacuation. The detailed activities associated with the spool processing are as follows:

- ▶ Instead of being cut into different lengths, the produced rebar will be spooled into coils.
- ► The majority of the finished products will be moved with overhead cranes.
- ▶ Industrial forklift trucks move the finished spools from the rolling mill building to a nearby storage area.
- > When the spools are ready to be shipped, forklifts load the spools into trucks/trailers for shipping.

9.7 Slag Processing Plant

After the slag is removed from the meltshop, cooled, and stored in an outdoor storage pile, the slag is processed by on-site Slag Processing Plant (SPP). At the SPP slag will be processed through a system consisting of conveyors, hoppers, and screens in the following manner:

- Slag is transported to the feed hopper and grizzly screen.
 - Slag from the grizzly screen will be separated into metallic and non-metallic material using a magnet.
 - Metallic material will be introduced into a triple deck screen and separated into the following scrap grade. All three grades of scrap will then be routed to the ECS building.
 - A-Scrap (approximately 3/4-to-10-inch material);
 - B-Scrap (approximately 5/16 to 3/4 inch material); and
 - C-Scrap (approximately 0-to-5/16-inch material).
 - Non-metallic material will be introduced into a triple deck screen and separated into the following
 non-metallic material grades. All non-metallic material grades will be used onsite or transported offsite to be sold to consumers.
 - No. 1 Product (approximately 0-to-5/8-inch material);
 - No. 2 Product (approximately 5/8-to-1.5-inch material);
 - No. 3 Product (approximately 1.5-to-3-inch material); and
 - Overs (greater than 3-inch material).

At the SPP area, large pieces of scrap (also known as "reclaim" or "skulls", from the process) will be reduced in size by a ball drop crushing process.

9.8 Paved/Unpaved Roads

Vehicle traffic will occur on paved and unpaved roads located throughout the Facility. Paved and unpaved roads will be used by various vehicles, including haul trucks, trailers, loader trucks, Euclid/roll-off trucks, inert gas trucks, and forklifts/loaders. Fugitive emissions can occur due to vehicle traffic and wind erosion.

9.9 Utilities

9.9.1 Cooling Towers

Two non-contact cooling towers and one contact cooling tower will be used at the proposed micro mill to remove heat from the cooling water used in the proposed operations. The contact cooling tower's water will come into direct contact with the steel during the rolling mill process to provide cooling which may increase the solid content in the water.

9.9.2 Fuel Storage Tanks

Three diesel fuel tanks will be used to supply fuel to the site as follows:

- ▶ 500-gallon diesel storage tank for Emergency Generator No. 1;
- ▶ 500-gallon diesel storage tank for Fire Water Pump No. 1; and
- 5,000-gallon diesel storage tank supporting on-site vehicles.

9.9.3 Emergency Generator & Fire Water Pump

A 1,600 hp diesel fired emergency generator will supply power to the meltshop and other critical infrastructure during power outages. Similarly, a 300 hp emergency fire water pump will be used in case of emergency fire events at the proposed mill.

9.9.4 Other Miscellaneous Equipment

Operations at the proposed Project will include additional pieces of equipment classified as "De minimis sources" pursuant to 45 CSR 13-2.2.6. These include the following:

- Air compressors and pneumatically-operated equipment, including hand tools; instrument air systems (excluding fuel-fired compressors); emissions from pneumatic starters on reciprocating engines, turbines or other equipment; and periodic use of air for cleanup (excluding all sandblasting activities).
- Bench-scale laboratory equipment used for physical or chemical analysis, excluding lab fume hoods or vents.
- Portable brazing, soldering, gas cutting or welding equipment used as an auxiliary to the principal equipment at the source.
- Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.
- Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.

10. ATTACHMENT H: MATERIAL SAFETY DATA SHEETS

Attachment N: Supporting Emission Calculations provides the specifications for materials that will be located at the proposed Project. A safety data sheet (SDS) for the diesel fuel to be utilized at the proposed Project is included in this section.

Section 1. Identification

CHS Inc.	Transportation Emergency (CHEMTREC)		:	1-800-424-9300
P.O. Box 64089 Mail station 525		Technical Information	:	1-651-355-8443
St. Paul, MN 55164-008		SDS Information	:	1-651-355-8445
Product name	No. 2 ULTRA LOW SULFUR DIESEL FUEL / DIST (sulfur<15ppm)	ILLATE SDS no.	:	0201-M1A0.3.HL
Common name	#2 Diesel Fuel, #2 Distillate, Fuel Oil Fieldmaster X Roadmaster XL Diesel Fuel	L Diesel Fuel, Revision date	:	06/01/2021
Chemical name	Petroleum Distillate	Chemical formula	:	Mixture
Chemical family	A mixture of paraffinic, olefinic, naphthenic and aro hydrocarbons.	matic		

Relevant identified uses of the substance or mixture and uses advised against

Not available.

Section 2. Hazards identification

OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	: FLAMMABLE LIQUIDS - Category 3 CARCINOGENICITY - Category 2
<u>GHS label elements</u>	
Hazard pictograms	
Signal word	: Warning
Hazard statements	 H226 - Flammable liquid and vapor. H351 - Suspected of causing cancer.
Precautionary statements	
General	: Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand.
Prevention	: Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Wear protective gloves. Wear eye or face protection. Wear protective clothing. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use explosion-proof electrical, ventilating, lighting and all material-handling equipment. Use only non-sparking tools. Take precautionary measures against static discharge. Keep container tightly closed.
Response	: IF exposed or concerned: Get medical attention. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower.
Storage	: Store locked up. Store in a well-ventilated place. Keep cool.
Disposal	: Dispose of contents and container in accordance with all local, regional, national and international regulations.
Hazards not otherwise classified	: None known.
Hazardous Material Information Sy	stem (U.S.A.) Health : * 0 Flammability : 2 Physical hazards : 0
National Fire Protection Association	on (U.S.A.) Health : 1 Flammability : 2 Instability : 0

Section 3. Composition/information on ingredients

Substance/mixture	: Mixture
Chemical name	: Petroleum Distillate
Other means of identification	: #2 Diesel Fuel, #2 Distilla

: #2 Diesel Fuel, #2 Distillate, Fuel Oil Fieldmaster XL Diesel Fuel, Roadmaster XL Diesel Fuel

Ingredient name	%	CAS number
Fuels, diesel, No 2 Ethylbenzene Naphthalene	≤0.3	68476-34-6 100-41-4 91-20-3

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First aid measures

Description of necessary first aid measures : If material comes in contact with the eyes, immediately wash the eyes with large amounts of water for 15 Eye contact minutes, occasionally lifting the lower and upper lids. Get medical attention. If person breathes in large amounts of material, move the exposed person to fresh air at once. If breathing has Inhalation : stopped, perform artificial respiration. Keep the person warm and at rest. Get medical attention as soon as possible. Skin contact : If the material comes in contact with the skin, wash the contaminated skin with soap and water promptly. If the material penetrates through clothing, remove the clothing and wash the skin with soap and water promptly. If irritation persists after washing, get medical attention immediately. Ingestion If material has been swallowed, do not induce vomiting. Get medical attention immediately. Most important symptoms/effects, acute and delayed Potential acute health effects Eve contact : No known significant effects or critical hazards. Inhalation : No known significant effects or critical hazards. Skin contact No known significant effects or critical hazards. Ingestion No known significant effects or critical hazards. Over-exposure signs/symptoms Eye contact : Adverse symptoms may include the following: pain or irritation, watering, redness. Inhalation : Adverse symptoms may include the following: respiratory tract irritation, coughing. Skin contact : Adverse symptoms may include the following: irritation, redness. No known significant effects or critical hazards. Ingestion Indication of immediate medical attention and special treatment needed, if necessary Notes to physician : Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled. Specific treatments No specific treatment. Protection of first-aiders No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. See toxicological information (Section 11)

Section 5. Fire-fighting measures

Extinguishing media

Suitable extinguishing media	: Use water spray to cool fire exposed surfaces and to protect personnel. Foam, dry chemical or water spray (fog) to extinguish fire.
Unsuitable extinguishing media	: Do not use water jet or water-based fire extinguishers.
Specific hazards arising from the chemical	: Vapors are heavier than air and may travel along the ground to a source of ignition (pilot light, heater, electric motor) some distance away. Containers, drums (even empty) can explode when heat (welding, cutting, etc.) is applied.
Hazardous thermal decomposition products	: No specific data.
Special protective actions for fire-fighters	: Water may be ineffective on flames, but should be used to keep fire-exposed containers cool. Water or foam sprayed into container of hot burning product could cause frothing and endanger fire fighters. Large fires, such as tank fires, should be fought with caution. If possible, pump the contents from the tank and keep adjoining structures cool with water. Avoid spreading burning liquid with water used for cooling purposes. Do not flush down public sewers. Avoid inhalation of vapors. Firefighters should wear self-contained breathing apparatus.

No. 2 ULTRA LOW SULFUR DIESEL FUEL / DISTILLATE (sulfur<15ppm)

Special protective equipment for fire-fighters

: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

For non-emergency personnel : Keep unnecessary and unprotected personnel from entering. Avoid breathing vapor or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.

Methods and materials for containment and cleaning up

Spill

: Contain with dikes or absorbent to prevent migration to sewers/streams. Take up small spill with dry chemical absorbent; large spills may require pump or vacuum prior to absorbent. May require excavation of severely contaminated soil.

Section 7. Handling and storage

Precautions for safe handling	
Protective measures	Put on appropriate personal protective equipment (see Section 8). Do not get in eyes or on skin or clothing. Do not breathe vapor or mist. Do not ingest. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate.
Advice on general occupational hygiene	: Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking.
Conditions for safe storage, including any incompatibilities	: Do not store above the following temperature: 113°C (235.4°F). Odorous and toxic fumes may form from the decomposition of this product if stored at excessive temperatures for extended periods of time. Store in accordance with local regulations. Store in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10). Use appropriate containment to avoid environmental contamination.

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

Ingredient name	Exposure limits
Fuels, diesel, No 2	ACGIH TLV (United States, 3/2017). Absorbed through skin. TWA: 100 mg/m ³ , (measured as total hydrocarbons) 8 hours. Form:
Ethylbenzene	Inhalable fraction and vapor ACGIH TLV (United States, 3/2017).
	TWA: 20 ppm 8 hours.
	NIOSH REL (United States, 10/2016).
	TWA: 100 ppm 10 hours.
	TWA: 435 mg/m³ 10 hours.
	STEL: 125 ppm 15 minutes.
	STEL: 545 mg/m ³ 15 minutes.
	OSHA PEL (United States, 6/2016).
	TWA: 100 ppm 8 hours.
	TWA: 435 mg/m ³ 8 hours.
Naphthalene	ACGIH TLV (United States, 3/2017). Absorbed through skin.
	TWA: 10 ppm 8 hours.
	TWA: 52 mg/m³ 8 hours.
	NIOSH REL (United States, 10/2016).
	TWA: 10 ppm 10 hours.
	TWA: 50 mg/m ³ 10 hours.
	STEL: 15 ppm 15 minutes.
	STEL: 75 mg/m ³ 15 minutes.
	OSHA PEL (United States, 6/2016). TWA: 10 ppm 8 hours.
	TWA: 10 ppin 8 hours.
	TWA. 30 Highli 6 Hours.
ppropriate engineering controls	: Use only with adequate ventilation.
nvironmental exposure controls	: Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation.
dividual protection measures	
Hygiene measures	: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and u

Eye/lace protection	
Skin protection	
Hand protection	

: 4 - 8 hours (breakthrough time): Nitrile gloves.

No. 2 ULTRA LOW SULFUR DIESEL FUEL / DISTILLATE (sulfur<15ppm)

Body protection Other skin protection Respiratory protection

- : Recommended: Long sleeved coveralls.
- : Recommended: Impervious boots.

: If ventilation is inadequate, use a NIOSH-certified respirator with an organic vapor cartridge and P95 particulate filter.

<u>Appearance</u>		Relative density	:	0.85
Physical state	: Liquid. [Mobile liquid.]	Evaporation rate	:	Not available.
Color	: Clear yellow. Red.	Solubility	:	Insoluble in the following materials: cold wate and hot water.
Odor	: Characteristic. Hydrocarbon.	Solubility in water	:	Insoluble
Odor threshold	: Not available.	Partition coefficient: n-	:	Not available.
рН	Not available.	octanol/water		
Melting point	: Not available.	Auto-ignition temperature	:	Not available.
Boiling point	: 157.22 to 343.33°C (315 to 650°F)	Decomposition temperature	:	Not available.
Flash point	: Closed cup: 60°C (140°F) [Pensky-Martens.]	SADT	:	Not available.
Flammability	: Not available.	Viscosity	:	Not available.
Lower and upper	: Not available.	Vapor pressure	:	Not available.
explosive (flammable) limits		Vapor density	:	>3 [Air = 1]

Section 9. Physical and chemical properties

Section 10. Stability and reactivity

Reactivity Chemical stability Possibility of hazardous reactions	: '	No specific test data related to reactivity available for this product or its ingredients. The product is stable. Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid		Avoid all possible sources of ignition (spark or flame). Do not pressurize, cut, weld, braze, solder, drill, grind or expose containers to heat or sources of ignition. Do not allow vapor to accumulate in low or confined areas.
Incompatible materials		Reactive or incompatible with the following materials: Strong oxidizing agents.
Hazardous decomposition products	: 1	Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Section 11. Toxicological information

Information on toxicological effects

Acute toxicity

Product/ingredient name	Result	Species	Dose	Exposure
Ethylbenzene	LD50 Dermal LD50 Oral		>5000 mg/kg 3500 mg/kg	-
Naphthalene	LD50 Dermal LD50 Oral	Rabbit	>20 g/kg 490 mg/kg	-

Irritation/Corrosion

Product/ingredient name	Result	Species	Score	Exposure	Observation
Biphenyl	Eyes - Mild irritant	Rabbit	-	100 mg	-
	Skin - Severe irritant	Rabbit	-	24 hours 500 µL	-
Naphthalene	Skin - Mild irritant	Rabbit	-	495 mg	-
	Skin - Severe irritant	Rabbit	-	24 hours 0.05 mL	-

Sensitization

Skin

Respiratory

There is no data available.There is no data available.

Mutagenicity

There is no data available.

Carcinogenicity

Classification

Product/ingredient name	OSHA	IARC	NTP
Ethylbenzene	-	2B	-
Naphthalene		2B	Reasonably anticipated to be a human carcinogen.

Reproductive toxicity

There is no data available.

Teratogenicity

There is no data available.

Specific target organ toxicity (single exposure)

There is no data available.

Specific target organ toxicity (repeated exposure)

Name	Category	Route of exposure	Target organs
Ethylbenzene	Category 2	Not determined	hearing organs

Aspiration hazard

Name	Result
Ethylbenzene	ASPIRATION HAZARD - Category 1

Information on the likely routes of : Dermal contact. Eye contact. Inhalation. Ingestion. exposure

Section 12. Ecological information

Toxicity

Product/ingredient name	Result	Species	Exposure
Ethylbenzene	Acute EC50 13300 µg/L Fresh water	Crustaceans - Artemia sp Nauplii	48 hours
	Acute LC50 13900 µg/L Fresh water	Daphnia - Daphnia magna - Neonate	48 hours
Naphthalene	Acute EC50 1600 µg/L Fresh water	Daphnia - Daphnia magna - Neonate	48 hours
	Acute LC50 2350 µg/L Marine water	Crustaceans - Palaemonetes pugio	48 hours
	Acute LC50 213 µg/L Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Chronic NOEC 0.5 mg/L Marine water	Crustaceans - Uca pugnax - Adult	3 weeks
	Chronic NOEC 1.5 mg/L Fresh water	Fish - Oreochromis mossambicus	60 days

Persistence and degradability

There is no data available.

Bioaccumulative potential

Product/ingredient name	LogPow	BCF	Potential
Fuels, diesel, No 2 Ethylbenzene Naphthalene	>3.3 3.6 3.4	- - 36.5 to 168	low low low
	3.4	30.5 10 168	IOW

<u>Mobility in soil</u>

Soil/water partition coefficient (Koc) : There is no data available.

Other adverse effects

: No known significant effects or critical hazards.

Section 13. Disposal considerations

Disposal methods

: Disposal of this product, solutions and any by-products should comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements.

Section 14. Transport information

DOT IDENTIFICATION NUMBER UN1202	DOT proper shipping name	DIESEL FUEL
DOT Hazard Class(es) 3	PG III	DOT EMER. RESPONSE GUIDE NO. 128

Section 15. Regulatory information

U.S. Federal regulations	United States inventory (Clean Water Act (CWA) 3	alene Partial exemption: Not determined (TSCA 8b): All components are listed or exempted. 307: Ethylbenzene; Naphthalene 311: Ethylbenzene; Naphthalene	
Clean Air Act Section 602 Class I Subs Clean Air Act Section 602 Class II Subs Clean Air Act Section 112(b) Hazardou	stances : Not listed	DEA List I Chemicals (Precursor Chemicals) DEA List II Chemicals (Essential Chemicals) : Listed	: Not listed : Not listed
SARA 302/304			
Composition/information on ingre	<u>dients</u>		
No products were found.			
SARA 304 RQ	: Not applicable.		
<u>SARA 311/312</u>			
Hazard classifications	: FLAMMABLE LIQUIDS - C CARCINOGENICITY - Cat	0,	
Composition/information on ingre	<u>dients</u>		
Name		Classification	

Name	Classification
Fuels, diesel, No 2	FLAMMABLE LIQUIDS - Category 3 CARCINOGENICITY - Category 2
Ethylbenzene	FLAMMABLE LIQUIDS - Category 2 ACUTE TOXICITY (inhalation) - Category 4
	SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2A
	CARCINOGENICITY - Category 2
	SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) (hearing
	organs) - Category 2
	ASPIRATION HAZARD - Category 1
Naphthalene	FLAMMABLE SOLIDS - Category 2
	ACUTE TOXICITY (oral) - Category 4
	CARCINOGENICITY - Category 2
SARA 313	: This product (does/not) contain toxic chemicals subject to the reporting requirements of SARA Section 313 of

<u>\ 313</u>	: This product (does/not) contain toxic chemicals subject to the reporting requirements of SARA Section 313 of
	the Emergency Planning and Community Right-To-Know Act of 1986 and of 40 CFR 372.

Product name	CAS number	%
- ,	100-41-4 91-20-3	0.1 0.1

SARA 313 notifications must not be detached from the SDS and any copying and redistribution of the SDS shall include copying and redistribution of the notice attached to copies of the SDS subsequently redistributed.

State regulations

Massachusetts

- : None of the components are listed.
- : The
- The following components are listed: Ethylbenzene; NaphthaleneThe following components are listed: Ethylbenzene; Naphthalene

New Jersey Pennsylvania

New York

: The following components are listed: Ethylbenzene; Naphthalene

California Prop. 65

WARNING: This product can expose you to chemicals including Ethylbenzene, Naphthalene, which are known to the State of California to cause cancer. For more information go to www.P65Warnings.ca.gov.

Ingredient name	No significant risk level	Maximum acceptable dosage level	
Ethylbenzene Naphthalene	Yes. Yes.	-	

Section 16. Other information

Review date Revised Section(s) : 06/01/2021 : None.

: 10/17/2017 Supersedes Prepared by

: KMK Regulatory Services Inc.

Notice to reader THE INFORMATION CONTAINED IN THIS SDS RELATES ONLY TO THE SPECIFIC MATERIAL IDENTIFIED. IT DOES NOT COVER USE OF THAT MATERIAL IN COMBINATION WITH ANY OTHER MATERIAL OR IN ANY PARTICULAR PROCESS. IN COMPLIANCE WITH 20 F.R. 1910.1200(g), CHS HAS PREPARED THIS SDS IN SEGMENTS, WITH THE INTENT THAT THOSE SEGMENTS BE READ TOGETHER AS A WHOLE WITHOUT TEXTUAL OMISSIONS OR ALTERATIONS. CHS BELIEVES THE INFORMATION CONTAINED HEREIN TO BE ACCURATE, BUT MAKES NO REPRESENTATION, GUARANTEE, OR WARRANTY, EXPRESS OR IMPLIED, ABOUT THE ACCURACY, RELIABILITY, OR COMPLETENESS OF THE INFORMATION OR ABOUT THE FITNESS OF CONTENTS HEREIN FOR EITHER GENERAL OR PARTICULAR PURPOSES. PERSONS REVIEWING THIS SDS SHOULD MAKE THEIR OWN DETERMINATION AS TO THE MATERIAL'S SUITABILITY AND COMPLETENESS FOR USE IN THEIR PARTICULAR APPLICATIONS.

OUR ENERGY COMES THROUGH.

11. ATTACHMENT I: EMISSION UNITS TABLE

Emission Unit ID	Emission Point ID	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ID	Control Description
Onic ID	T ONIC ID	Me	tshop			
	BH1				BH1-BH	Pulse Jet Fabric Filter Baghouse 1
EAF1	CV1	Electric Arc Furnace 1	New/Proposed	117 ton steel/hr	N/A	None
	BH1	Ladle Metallurgical Station 1	New/Dueneed		BH1-BH	Pulse Jet Fabric Filter Baghouse 1
LMS1	CV1	Ladle Metallurgical Station 1	New/Proposed	117 ton steel/hr	N/A	None
CAST1	CV1	Continuous Caster 1	New/Proposed	117 ton steel/hr	BH1-BH	Pulse Jet Fabric Filter Baghouse 1
LPH1	CV1	Ladle Preheaters	New/Proposed	18.00 MMBtu/hr	N/A	None
LD1	CV1	Ladle Dryers	New/Proposed	16.00 MMBtu/hr	N/A	None
TPH1	CV1	Tundish Preheaters	New/Proposed	12.00 MMBtu/hr	N/A	None
TD1	CV1	Tundish Dryer	New/Proposed	6.00 MMBtu/hr	N/A	None
TMD1	CV1	Tundish Mandril Dryer	New/Proposed	1.00 MMBtu/hr	N/A	None
SRDHTR1	CV1	Shroud Heater	New/Proposed	0.50 MMBtu/hr	N/A	None
MSAUXHT	CV1	Meltshop Comfort Heaters	New/Proposed	8.00 MMBtu/hr	N/A	None
		Rollin	ng Mills			
RMV1	RMV1	Rolling Mill	New/Proposed	117 ton steel/hr	N/A	None
CBV1	CBV1	Cooling Beds	New/Proposed	117 ton steel/hr	N/A	None
SPV1	SPV1	Spooler Vent	New/Proposed	117 ton steel/hr	N/A	None
BF1	RMV1	Bit Furnace	New/Proposed	0.23 MMBtu/hr	N/A	None
RMAUXHT	RMV1	Rolling Mill Comfort Heaters	New/Proposed	8.00 MMBtu/hr	N/A	None
		Material S	torage Silos			
FLXSLO11	FLXSLO11	Fluxing Agent Storage Silo No. 1	New/Proposed	250 ton	FLXSLO11-BV	Bin Vent
FLXSLO12	FLXSLO12	Fluxing Agent Storage Silo No. 2	New/Proposed	250 ton	FLXSLO12-BV	Bin Vent
CARBSLO1	CARBSLO1	Carbon Storage Silo No. 1	New/Proposed	250 ton	CARBSLO1-BV	Bin Vent
DUSTSLO1	DUSTSL01	EAF Baghouse Dust Silo	New/Proposed	190 ton	DUSTSLO1-BV	Bin Vent
		Cooling	g Towers			
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	New/Proposed	11,000 gpm	CTNC11A-DE	Drift Eliminator
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	New/Proposed	11,000 gpm	CTNC11B-DE	Drift Eliminator
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	New/Proposed	11,000 gpm	CTNC12A-DE	Drift Eliminator
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	New/Proposed	11,000 gpm	CTNC12B-DE	Drift Eliminator
CTC1	CTC1A	Contact Cooling Tower - Cell 1	New/Proposed	5,500 gpm	CTC1A-DE	Drift Eliminator
CTC1	CTC1B	Contact Cooling Tower - Cell 2	New/Proposed	5,500 gpm	CTC1B-DE	Drift Eliminator
		Materia	l Handling			
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	New/Proposed	830 tons/hr	N/A	Partial Enclosure
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	New/Proposed	330 tons/hr	N/A	None
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	New/Proposed	110 tons/hr	N/A	None
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	New/Proposed	110 tons/hr	N/A	None
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	New/Proposed	30 tons/hr	N/A	Full Enclosure
TR81	TR81	Outside Drop Points, Alloy Aggregate	New/Proposed	60 tons/hr	N/A	Partial Enclosure
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	New/Proposed	25 tons/hr	N/A	Full Enclosure
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	New/Proposed	25 tons/hr	N/A	None
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	New/Proposed	100 tons/hr	N/A	None
TR11B1	TR11B1	Drop from Loader to SPP Feed Hopper, Slag	New/Proposed	100 tons/hr	N/A	Moisture Content of Material
TR11B2	TR11B2	Drop from SPP Feed Hopper to SPP Grizzly	New/Proposed	100 tons/hr	N/A	Moisture Content of Material
TR11B3	TR11B3	Drop from SPP Grizzly to SPP Feed Belt	New/Proposed	100 tons/hr	N/A	Moisture Content of Material
TR11B4	TR11B4	Drop from SPP Feed Belt to SPP Metallics Conveyor	New/Proposed	15 tons/hr	N/A	Moisture Content of Material
TR11B5	TR11B5	Drop from SPP Metallics Conveyor to SPP Triple Deck Metallics Screen	New/Proposed	15 tons/hr	N/A	Moisture Content of Material
TR11B6	TR11B6	Drop from SPP Feed Belt to SPP Triple Deck Non-Metallics Screen	New/Proposed	85 tons/hr	N/A	Moisture Content of Material

Attachment I **Emission Units Table** (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

mission Unit ID	Emission Point ID	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ID	Control Description
1TLSCR	MTLSCR	SPP Triple Deck Metallics Screen	New/Proposed	15 tons/hr	N/A	Moisture Content of Material
MTLSCR	NOMTLSCR	SPP Triple Deck Non-Metallics Screen	New/Proposed	85 tons/hr	N/A	Moisture Content of Material
R11B7	TR11B7	Drop from SPP Triple Deck Metallics Screen to Stacking Conveyor No. 1	New/Proposed	3 tons/hr	N/A	Moisture Content of Material
TR11B8	TR11B8	Drop from SPP Triple Deck Metallics Screen to Stacking Conveyor No. 2	New/Proposed	3 tons/hr	N/A	Moisture Content of Material
TR11B9	TR11B9	Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No.	New/Proposed	43 tons/hr	N/A	Moisture Content of Material
TR11B10	TR11B10	Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No.	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR11B11	TR11B11	Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No.	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
FR11B12	TR11B12	Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No.	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR11B13	TR11B13	Drop from Stacking Conveyor No. 1 to SPP C-Scrap Pile	New/Proposed	3 tons/hr	N/A	Moisture Content of Material
FR11B14	TR11B14	Drop from Stacking Conveyor No. 2 to SPP B-Scrap Pile	New/Proposed	3 tons/hr	N/A	Moisture Content of Material
TR11B15	TR11B15	Drop from SPP Triple Deck Metallics Screen to SPP A-Scrap Pile	New/Proposed	9 tons/hr	N/A	Moisture Content of Material
FR11B16	TR11B16	Drop from Stacking Conveyor No. 3 to SPP No. 1 Products Pile	New/Proposed	43 tons/hr	N/A	Moisture Content of Material
TR11B17	TR11B17	Drop from Stacking Conveyor No. 4 to SPP No. 3 Products Pile	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR11B18	TR11B18	Drop from Stacking Conveyor No. 5 to SPP Overs Pile	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR11B19	TR11B19	Drop from Stacking Conveyor No. 6 to SPP No. 2 Products Pile	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR11B20	TR11B20	Drop from SPP A-Scrap Pile to Trucks	New/Proposed	9 tons/hr	N/A	Moisture Content of Material
TR11B21	TR11B21	Drop from SPP B-Scrap Pile to Trucks	New/Proposed	3 tons/hr	N/A	Moisture Content of Material
TR11B22	TR11B22	Drop from SPP C-Scrap Pile to Trucks	New/Proposed	3 tons/hr	N/A	Moisture Content of Material
TR11B23	TR11B23	Drop from SPP No. 1 Products Pile to Trucks	New/Proposed	43 tons/hr	N/A	Moisture Content of Material
TR11B24	TR11B24	Drop from SPP No. 2 Products Pile to Trucks	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR11B25	TR11B25	Drop from SPP No. 3 Products Pile to Trucks	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR11B26	TR11B26	Drop from SPP Overs Pile to Trucks	New/Proposed	14 tons/hr	N/A	Moisture Content of Material
TR131	TR131	Outside Drop Points, Residual Scrap Pile	New/Proposed	25 tons/hr		None
TR141	TR141	Outside Drop Points, Mill Scale Pile	New/Proposed	60 tons/hr	N/A	Partial Enclosure
CR1	CR1	Ball Drop Crushing	New/Proposed	8 tons/hr		None
CIVI	CIVI		orage Piles	0 (0115)111	14/7	Hone
W51A	W51A	ECS Scrap Building Storage Pile A	New/Proposed	5,900 sq ft	N/A	Partial Enclosure
W51A W51B	W51A W51B	ECS Scrap Building Storage Pile B	New/Proposed	5,400 sq ft	N/A N/A	Partial Enclosure
W51C	W51D	ECS Scrap Building Storage Pile C	New/Proposed	5,300 sq ft	N/A	Partial Enclosure
W51D	W51C	ECS Scrap Building Overage Scrap Pile	New/Proposed	12,100 sq ft		None
W51E	W51D W51E	Outside Rail Scrap 5k Pile A	New/Proposed	9,100 sq ft		None
W51E	W51E	Outside Rail Scrap 5k Pile B	New/Proposed	9,100 sq ft	N/A	None
W51F W51G	W51F W51G	Outside Rail Scrap 5k Pile D	New/Proposed	9,100 sq ft		None
W51G	W51G	Outside Rail Scrap 5k Pile D			· · · · · · · · · · · · · · · · · · ·	None
W51K	W51K	Outside Truck Scrap 5k Pile A	New/Proposed New/Proposed	9,100 sq ft 9,100 sq ft	N/A	None
W51K W51L	W51K W51L	Outside Truck Scrap 5k Pile B			N/A	None
W51L W51M			New/Proposed New/Proposed	9,100 sq ft		None
	W51M	Outside Truck Scrap 5k Pile C		9,100 sq ft		None
W51N	W51N	Outside Truck Scrap 5k Pile D	New/Proposed	9,100 sq ft	N/A	
W61	W61	Alloy Aggregate Storage Pile	New/Proposed	1,000 sq ft	N/A	Partial Enclosure
W71A	W71A	SPP Slag Storage Pile	New/Proposed	29,100 sq ft	· · ·	None
W71B	W71B	SPP Piles	New/Proposed	74,100 sq ft	· · · · · · · · · · · · · · · · · · ·	None
W81	W81	Residual Scrap Storage Pile in Scrap Yard	New/Proposed	21,200 sq ft	· · · · ·	None
W111	W111	Mill Scale Pile	New/Proposed	3,500 sq ft	N/A	Partial Enclosure
			roads			
PR1	PR1	Paved Roads	New/Proposed	34.91 VMT/hr		Watering + Sweeping
UR1	UR1	Unpaved Roads	New/Proposed	3.12 VMT/hr	N/A	Watering

Attachment I

Attachment I **Emission Units Table** (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID	Emission Point ID	Emission Unit Description	Year Installed/ Modified	Design Capacity	Control Device ID	Control Description
EGEN1	EGEN1	Emergency Generator 1	New/Proposed	1,600 hp	N/A	None
EFWP1	EFWP1	Emergency Fire Water Pump 1	New/Proposed	300 hp	N/A	None
TORCH1	TORCH1	Cutting Torches	New/Proposed	0.32 MMBtu/hr	N/A	None
DSLTK-GEN1	DSLTK-GEN1	Diesel Storage Tank for Emergency Generator No. 1	New/Proposed	500 gal	N/A	None
DSLTK-FWP1	DSLTK-FWP1	Diesel Storage Tank for Fire Water Pump No. 1	New/Proposed	500 gal	N/A	None
DSLTK-VEH	DSLTK-VEH	Diesel Storage Tank Supporting On-Site Vehicles	New/Proposed	5,000 gal	N/A	None

12. ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

			REGULATE	D AIR POLLUT	ANT DATA	T			EMI	SSIONS INFORM	MATION				EMISSION POIN	T DISCHARG	E PARAMETER	RS		
	ON POINT [1]		I UNITS VENTED H THIS POINT		ION CONTROL VICE	CHEMICAL COMPOSITION OF TOTAL STREAM		CONTROLLED SIONS				итм соо	RDINATES (POINT	OF EMISSION		1	STACK SOL	JRCES		
ID	ТҮРЕ	EMISSION UNIT ID	EMISSION UNIT DESCRIPTION	CONTROL DEVICE ID	CONTROL DEVICE TYPE	REGULATED AIR POLLUTANT NAME [2]	#/ HR. [3]	TONS/ YEAR [4]	EMISSION FORM OR PHASE (AT EXIT CONDITIONS)	EST. METHOD USED [5]	EMISSION CONCENTRATION (ppmv or mg/m3) [6]	ZONE	EAST (Mtrs)	NORTH (Mtrs)	ELEVATION: GROUND LEVEL (ft)	STACK HEIGHT ABOVE GROUND LEVEL. (ft)	DIAMETER (ft)	E VOL. FLOW	XIT DATA	
																[7]		(ACFM) [8]	VEL. (fps)	TEMP (°F)
						Filterable PM	10.36	45.36	Solid	O (BACT)	TBD	ł								
						Total PM Total PM ₁₀	29.92 29.92	131.03 131.03	Solid Solid/Gas	O (BACT) O (BACT)	TBD TBD	+								
						Total PM _{2.5}	29.92	131.03	Solid/Gas	O (BACT)	TBD	+								
						NO _X	45.63	97.50	Gas	O (BACT)	TBD	1								
						CO	936.00	1,300.00	Gas	O (BACT)	TBD]								
BH1	Point	EAF1, LMS1	Meltshop Baghouse	BH1-BH	Baghouse	VOC	35.10	97.50	Gas	O (BACT)	TBD	18	252,059	4,380,348	N/A	164	17	788,000	57	176
						SO ₂ Pb	49.14 0.19	97.50 0.52	Gas Solid	O (BACT) EE	TBD TBD	-								
						Max Single HAP	0.19	1.21	Solid/Gas	EE	TBD	+								
						Total HAP	0.83	2.31	Solid/Gas	EE	TBD	-								
						Fluorides	1.17	3.25	Gas	O (BACT)	TBD	1								
						CO ₂ e	-	119,513	Gas	EE	TBD									
						Filterable PM	1.12	3.51	Solid	O (BACT)	TBD	-								
						Total PM Total PM ₁₀	1.70 1.70	5.96 5.96	Solid Solid/Gas	O (BACT) O (BACT)	TBD TBD	+								
						Total PM _{2.5}	1.70	5.96	Solid/Gas	O (BACT)	TBD	4								
						NO _X	8.85	36.03	Gas	O (BACT)	TBD	1								
						CO	7.92	25.80	Gas	O (BACT)	TBD]								
CV1	Bouyant Line	EAF1, LMS1	Caster Vent	N/A	N/A	VOC	0.72	2.75	Gas	O (BACT)	TBD	18	251,718	4,380,214	N/A	121	N/A	N/A	10.37	136
						SO ₂	0.80	3.00	Gas	O (BACT)	TBD	-								
						Pb Max Single HAP	2.38E-03 0.11	0.0066 4.41E-01	Solid Solid/Gas	EE	TBD TBD	+								
						Total HAP	1.23E-01	0.4913	Solid/Gas	EE	TBD	+								
						Fluorides	1.47E-02	0.0407	Gas	O (BACT)	TBD	1								
						CO ₂ e	-	35,348	Gas	EE	TBD									
						Filterable PM	0.028	0.050	Solid	EE	TBD	1								
						Total PM	0.073	0.152	Solid	EE	TBD	1								
						Total PM ₁₀ Total PM _{2.5}	0.073	0.152	Solid/Gas Solid/Gas	EE	TBD TBD	+								
						NO _X	1.17	2.63	Gas	EE	TBD	1								
RMV1	Bouyant Line	RMV1	Rolling Mill Vent	N/A	N/A	CO	0.68	1.52	Gas	EE	TBD	18	251,756	4,380,274	N/A	69	N/A	N/A	2.00	122
						VOC	0.082	0.172	Gas	EE	TBD]								
						SO ₂	0.090	0.20	Gas	EE	TBD	4								
						Max Single HAP Total HAP	0.015	0.033	Solid/Gas	EE	TBD	-								
						CO ₂ e	0.015	0.034 2,575	Solid/Gas Gas	EE	TBD TBD	┦								
						Filterable PM	0.01	0.01	Solid	EE	TBD									
						Total PM	0.01	0.01	Solid	EE	TBD]								
CBV1	Bouyant Line	CBV1	Cooling Bed Vent	N/A	N/A	Total PM ₁₀	0.01	0.01	Solid/Gas	EE	TBD	18	251,843	4,380,393	N/A	66	N/A	N/A	3.54	142
						Total PM _{2.5}	0.01	0.01	Solid/Gas	EE	TBD	4								
						VOC Filterable PM	0.01	0.01	Gas Solid	EE	TBD TBD				1					
						Total PM	0.01	0.01	Solid	EE	TBD	1								
SPV1	Line	SPV1	Spooler Vent	N/A	N/A	Total PM ₁₀	0.01	0.01	Solid/Gas	EE	TBD	18	251,804	4,380,105	N/A	66	N/A	N/A	3.54	142
						Total PM _{2.5}	0.01	0.01	Solid/Gas	EE	TBD	1								
						VOC	0.01	0.01	Gas	EE	TBD									
						Filterable PM	0.13	0.064	Solid	O (BACT)	TBD	4								
FLXSLO11	Point	FLXSLO11	Fluxing Agent Storage Silo No. 1	FLXSLO11-BV	Filter	Total PM Total PM ₁₀	0.13 0.13	0.064	Solid Solid	O (BACT) O (BACT)	TBD TBD	18	251,936	4,380,493	N/A	95	0.50	50	4.24	Ambient
			5.10 110. 1			Total PM ₁₀	0.13	0.064	Solid	O (BACT) O (BACT)	TBD	+								

			REGULATE	O AIR POLLUTA	ANT DATA				EMI	SSIONS INFORM	ATION			E	MISSION POIN	T DISCHARG	E PARAMETER	S		
	ON POINT		N UNITS VENTED GH THIS POINT		ION CONTROL VICE	CHEMICAL COMPOSITION OF TOTAL STREAM		CONTROLLED SIONS				UTM COO	RDINATES (POINT	OF EMISSION		_	STACK SOU	IRCES		
ID	ТҮРЕ	EMISSION UNIT ID	EMISSION UNIT DESCRIPTION	CONTROL DEVICE ID	CONTROL DEVICE TYPE	REGULATED AIR POLLUTANT NAME [2]	#/ HR. [3]	TONS/ YEAR [4]	EMISSION FORM OR PHASE (AT EXIT CONDITIONS)	EST. METHOD USED [5]	EMISSION CONCENTRATION (ppmv or mg/m3) [6]	ZONE	EAST (Mtrs)	NORTH (Mtrs)	ELEVATION: GROUND LEVEL (ft)	STACK HEIGHT ABOVE GROUND LEVEL. (ft)	DIAMETER (ft)	E	XIT DATA	
																[7]		VOL. FLOW (ACFM) [8]	VEL. (fps)	TEMP (°F)
						Filterable PM	0.13	0.064	Solid	O (BACT)	TBD	-								
FLXSL012	Point	FLXSLO12	Fluxing Agent Storage Silo No. 2	FLXSLO12-BV	Filter	Total PM Total PM ₁₀	0.13	0.064	Solid Solid	O (BACT)	TBD TBD	18	251,934	4,380,490	N/A	95	0.50	50	4.24	Ambient
			5110 110. 2			Total PM ₁₀	0.13	0.064	Solid	O (BACT) O (BACT)	TBD	+								
						Filterable PM	0.088	0.044	Solid	O (BACT)	TBD									
CARBSLO1	Doint	CARBSLO1	Carbon Storage Silo	CARBSLO1C	Filter	Total PM	0.088	0.044	Solid	O (BACT)	TBD	18	251 022	4,380,488	N/A	95	0.50	50	4.24	Ambient
CARDOLUI	Point	CARDSLUI	No. 1	CARDSLUIC	Filler	Total PM ₁₀	0.088	0.044	Solid	O (BACT)	TBD	10	251,933	ч,300,488	IN/A	CE	0.50	50	4.24	Amplent
						Total PM _{2.5}	0.088	0.044	Solid	O (BACT)	TBD									
						Filterable PM Total PM	0.056	0.24	Solid Solid	O (BACT) O (BACT)	TBD TBD	+								
DUSTSL01	Point	DUSTSL01	EAF Baghouse Dust Silo	DUSTSLO1-BV	Filter	Total PM	0.056	0.24	Solid	O (BACT)	TBD	18	252,063	4,380,329	N/A	95	0.50	50	4.24	Ambient
						Total PM _{2.5}	0.056	0.24	Solid	O (BACT)	TBD	-								
						Filterable PM	0.11	0.48	Solid	O (BACT)	TBD									
CTNC11A	Point	CTNC11	Non-Contact Cooling	CTNC11A-DE	Drift Eliminator	Total PM	0.11	0.48	Solid	O (BACT)	TBD	18	251,903	4,380,365	N/A	13	18.01	514,120	33.63	Ambient
CINCIIA	1 Onite	CINCII	Tower 1 - Cell 1	CINCILA DE		Total PM ₁₀	0.075	0.33	Solid	O (BACT)	TBD	10	251,505	4,500,505	17/1	15	10.01	517,120	55.05	Ambient
						Total PM _{2.5}	2.39E-04	1.05E-03	Solid	O (BACT)	TBD									
			Non Contract Cooling			Filterable PM Total PM	0.11	0.48	Solid Solid	O (BACT) O (BACT)	TBD TBD	-								
CTNC11B	Point	CTNC11	Non-Contact Cooling Tower 1 - Cell 2	CTNC11B-DE	Drift Eliminator	Total PM	0.075	0.48	Solid	O (BACT)	TBD	18	251,908	4,380,371	N/A	13	18.01	514,120	33.63	Ambient
						Total PM _{2.5}	2.39E-04	1.05E-03	Solid	O (BACT)	TBD	-								
						Filterable PM	0.11	0.48	Solid	O (BACT)	TBD									
CTNC12A	Point	CTNC12	Non-Contact Cooling	CTNC12A-DF	Drift Eliminator	Total PM	0.11	0.48	Solid	O (BACT)	TBD	18	251,886	4,380,321	N/A	13	18.01	514,120	33.63	Ambient
emeiler	1 onite	CITICIL	Tower 2 - Cell 1	CINCILADE		Total PM ₁₀	0.075	0.33	Solid	O (BACT)	TBD	10	231,000	1,500,521		15	10101	51 1/120	55.05	, unbient
		-				Total PM _{2.5}	2.39E-04	1.05E-03	Solid	O (BACT)	TBD									
			Non-Contact Cooling			Filterable PM Total PM	0.11 0.11	0.48	Solid Solid	O (BACT) O (BACT)	TBD TBD	+								
CTNC12B	Point	CTNC12	Tower 2 - Cell 2	CTNC12B-DE	Drift Eliminator	Total PM ₁₀	0.075	0.33	Solid	O (BACT)	TBD	18	251,891	4,380,328	N/A	13	18.01	514,120	33.63	Ambient
						Total PM _{2.5}	2.39E-04	1.05E-03	Solid	O (BACT)	TBD	1								
						Filterable PM	0.055	0.24	Solid	O (BACT)	TBD									
CTC1A	Point	CTC1	Contact Cooling	CTC1A-DE	Drift Eliminator	Total PM	0.055	0.24	Solid	O (BACT)	TBD	18	251,924	4,380,388	N/A	30	8.01	138,511	45.87	Ambient
0.01/		0.01	Tower - Cell 1	0.02/102		Total PM ₁₀	0.038	0.16	Solid	O (BACT)	TBD	1 1	/	.,		50	0.01		.5.67	
						Total PM _{2.5}	1.19E-04	5.23E-04	Solid Solid	O (BACT)	TBD									
			Contact Cooling			Filterable PM Total PM	0.055	0.24 0.24	Solid	O (BACT) O (BACT)	TBD TBD	┦								
CTC1B	Point	CTC1	Tower - Cell 2	CTC1B-DE	Drift Eliminator	Total PM ₁₀	0.038	0.16	Solid	O (BACT)	TBD	18	251,932	4,380,400	N/A	30	8.01	138,511	45.87	Ambient
						Total PM _{2.5}	1.19E-04	5.23E-04	Solid	O (BACT)	TBD	<u>1 </u>								
						Filterable PM	0.53	0.026	Solid	EE	TBD	[
						Total PM	0.53	0.026	Solid	EE	TBD	1								
						Total PM ₁₀	0.53	0.026	Solid/Gas	EE	TBD	4								
						Total PM _{2.5} NO _X	0.53 9.82	0.026	Solid/Gas Gas	EE	TBD TBD	╡								
EGEN1	Point	EGEN1	Emergency Generator	N/A	N/A	CO	9.82	0.49	Gas	EE	TBD	18	251,904	4,380,498	N/A	30	0.75	784	29.58	600
			1			VOC	0.70	0.035	Gas	EE	TBD	1	,,	,,						
						SO ₂	1.74E-02	8.70E-04	Gas	EE	TBD]								
						Max Single HAP	1.32E-02	6.61E-04	Solid/Gas	EE	TBD	1								
						Total HAP	4.34E-02	2.17E-03	Solid/Gas	EE	TBD	4								
						CO ₂ e	-	91.62	Gas	EE	TBD									

			REGULATE	D AIR POLLUT	ANT DATA				EMI	SSIONS INFORM	MATION			I	EMISSION POIN	IT DISCHARG		S		·
	ON POINT 1]		I UNITS VENTED IH THIS POINT		TON CONTROL	CHEMICAL COMPOSITION OF TOTAL STREAM		ONTROLLED SIONS					RDINATES O POINT	F EMISSION			STACK SOL	IRCES		
ID	ТҮРЕ	EMISSION UNIT ID	EMISSION UNIT DESCRIPTION	CONTROL DEVICE ID	CONTROL DEVICE TYPE	REGULATED AIR POLLUTANT NAME [2]	#/ HR. [3]	TONS/ YEAR [4]	EMISSION FORM OR PHASE (AT EXIT CONDITIONS)	EST. METHOD USED [5]	EMISSION CONCENTRATION (ppmv or mg/m3) [6]	ZONE	EAST (Mtrs)	NORTH (Mtrs)	ELEVATION: GROUND LEVEL (ft)	STACK HEIGHT ABOVE GROUND LEVEL. (ft)	DIAMETER (ft)	E	XIT DATA	
																[7]		VOL. FLOW (ACFM) [8]	VEL. (fps)	TEMP (°F)
						Filterable PM	0.10	0.005	Solid	EE	TBD									
						Total PM	0.10	0.005	Solid	EE	TBD	1								
						Total PM ₁₀	0.10	0.005	Solid/Gas	EE	TBD									
						Total PM _{2.5}	0.10	0.005	Solid/Gas	EE	TBD	1								
			Emergency Fire Water			NO _X	1.84	0.092	Gas	EE	TBD	l								
EFWP1	Point	EFWP1	Pump 1	N/A	N/A	CO	1.73	0.086	Gas	EE	TBD	18	251,898	4,380,358	N/A	12	0.50	1,500	127.95	848
						VOC	0.13	0.007	Gas	EE	TBD	4								
						SO ₂	3.26E-03	1.63E-04	Gas	EE	TBD	-								
						Max Single HAP	2.48E-03 8.13E-03	1.24E-04 4.07E-04	Solid/Gas Solid/Gas	EE	TBD TBD	-								
						Total HAP CO ₂ e	8.13E-03	4.07E-04 17.18	Gas	EE	TBD	-								
			Discal Chauses Taulo			VOC	0.015	3.62E-04	Gas	EE	TBD									<u> </u>
DSLTK-GEN1	Point	DSLTK-GEN1	Diesel Storage Tank for Emergency	N/A	N/A	Max Single HAP	6.01E-03	1.44E-04	Solid/Gas	EE	TBD	18	TBD	TBD	N/A	N/A	TBD	TBD	Negligible	Ambient
DOLIN GENI	1 Onit	DOLTR OLIVI	Generator No. 1	19/7	17/7	Total HAP	7.85E-03	1.88E-04	Solid/Gas	EE	TBD	10	TUU	TDD	19/5	17/5	100	TDD	Negligible	Ambient
			Diesel Storage Tank			VOC	0.015	3.62E-04	Gas	EE	TBD									<u> </u>
DSLTK-FWP1	Point	DSLTK-FWP1	for Fire Water Pump	N/A	N/A	Max Single HAP	6.01E-03	1.44E-04	Solid/Gas	EE	TBD	18	TBD	TBD	N/A	N/A	TBD	TBD	Negligible	Ambient
			No. 1			Total HAP	7.85E-03	1.88E-04	Solid/Gas	EE	TBD				.,					
			Diesel Storage Tank			VOC	0.15	3.59E-03	Gas	EE	TBD									1
DSLTK-VEH	Point	DSLTK-VEH	Supporting On-Site	N/A	N/A	Max Single HAP	6.01E-03	1.44E-04	Solid/Gas	EE	TBD	18	TBD	TBD	N/A	N/A	TBD	TBD	Negligible	Ambient
			Vehicles			Total HAP	7.85E-03	1.88E-04	Solid/Gas	EE	TBD	1								
						Filterable PM	0.20	0.20	Solid	EE	TBD									
						Total PM	0.20	0.20	Solid	EE	TBD									
						Total PM ₁₀	0.20	0.20	Solid/Gas	EE	TBD									
						Total PM _{2.5}	0.20	0.20	Solid/Gas	EE	TBD									
						NO _X	0.046	9.13E-02	Gas	EE	TBD									
TORCH1	Point	TORCH1	Cutting Torches	N/A	N/A	CO	2.64E-02	5.29E-02	Gas	EE	TBD	18	251,903	4,380,618	N/A	3	2.50	1	0.0033	848
				,		VOC	2.81E-03	5.62E-03	Gas	EE	TBD	1	251,903 4,380,6	,,	,	-		_		
						SO ₂	3.51E-03	7.02E-03	Gas	EE	TBD	4								
						Pb	1.57E-07	3.15E-07	Solid	EE	TBD	4								
						Max Single HAP	5.67E-04	1.13E-03	Solid/Gas	EE	TBD	4								
						Total HAP	5.95E-04	1.19E-03	Solid/Gas	EE	TBD	4								
General Instructi						CO ₂ e	-	89.39	Gas	EE	TBD	l					I		l	

1. Identify each emission point with a unique number for this plant site, consistent with emission point identification used on plot plan, previous permits, and Emission point identification used on plot plan, previous permits, and Emission point identification used on plot plan, previous permits, and Emission point identification used on plot plan, previous permits, and Emission point identification used on plot plant, previous permits, and Emission point identification used on plot plan, previous permits, and Emission point identification used on plot plan, previous permits, and Emission point identification used on plot plan, previous permits, and Emission point identification used on plot plant identification used on plant identification used on plant identification used on plot plant identification used on plant iden reactor, separator, baghouse, fugitive, etc. Abbreviations are O.K. Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

2. List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases Pounds per hour (#/HR) is maximum potential emission rate expected by applicant.

4. Tons per year is annual maximum potential emission expected by applicant, which takes into account process operating schedule.

5. Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify)

6. Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10). 7. Give at operating conditions. Including inerts.

8. Release height of emissions above ground level.

13. ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

Attachment K - Fugitive Emissions Data Summary Sheet

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

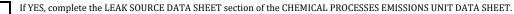
Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS

1.) Will there be haul road activities?

2.) Will there be Storage Piles?

3.) Will there be Liquid Loading/Unloading Operations?


No

If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.

4.) Will there be emissions of air pollutants from Wastewater Treatment Evaporation?

If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET. No

5.) Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?

6.) Will there be General Clean-up VOC Operations?

If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.

- 7.) Will there be any other activities that generate fugitive emissions?
 - Yes

If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.

	All Regulated Pollutants -	Maximum Uncontrolled		Maximum F Controlled E		Est. Method
FUGITIVE EMISSIONS SUMMARY	Chemical Name/CAS ¹	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
	Filterable PM	1.34	1.76	1.34	1.76	EE
	Total PM	1.34	1.76	1.34	1.76	EE
Haul Road/Road Dust Emissions Paved Haul Roads	Total PM ₁₀	0.27	0.35	0.27	0.35	EE
	Total PM _{2.5}	0.07	0.09	0.07	0.09	EE
	Filterable PM	8.24	5.97	8.24	5.97	EE
	Total PM	8.24	5.97	8.24	5.97	EE
Unpaved Haul Roads	Total PM ₁₀	2.20	1.59	2.20	1.59	EE
	Total PM _{2.5}	0.22	0.16	0.22	0.16	EE
Liquid Loading/Unloading Operations	N/A	N/A	N/A	es is presented in the R13-L (N/A	N/A	N/A
Wastewater Treatment Evaporation & Operations	N/A	N/A	N/A	N/A	N/A	N/A
Equipment Leaks	N/A	N/A	N/A	N/A	N/A	N/A
General Clean-up VOC Emissions	N/A	N/A	N/A	N/A	N/A	N/A
	Filterable PM	1.80	7.26	1.80	7.26	EE & O (BACT)
Other:	Total PM	1.80	7.26	1.80	7.26	EE & O (BACT)
Uncontrolled Material Handling and Storage	Total PM ₁₀ Total PM _{2.5}	0.90 0.14	3.62 0.55	0.90 0.14	3.62 0.55	EE & O (BACT) EE & O (BACT)

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS 2, VOCs, H 2 S, Inorganics, Lead, Organics,

03, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; 0 = other (specify).

14. ATTACHMENT L: EMISSIONS UNIT DATA SHEETS

Emission Unit	Form Number:	1	3	4	6a	6g	7. Projec	cted operating	schedule:
Emission Unit ID	Emission Point ID	Name or Type and Model	Name(s) and Maximum Process Materials Charged	Name(s) and Maximum Material Produced	Type and Amount of Fuel(s) Burned	Proposed Maximum Design Heat Input (10 ⁶ BTU/hr)	Hours/Day	Days/Week	Weeks/Year
EAF1, LMS1	BH1	Meltshop Baghouse	Steel: 117 tons/hr	Steel: 117 tons/hr	N/A	N/A	24	7	52
EAF1, LMS1	CV1	Caster Vent	Steel: 117 tons/hr	Steel: 117 tons/hr	Propane: 672 gal/hr Natural Gas: 60294 scf/hr	62	24	7	52
RMV1	RMV1	Rolling Mill Vent 1	Propane: 90 gal/hr Natural Gas: 8064 scf/hr Steel: 117 tons/hr	N/A	Propane: 90 gal/hr Natural Gas: 8064 scf/hr	8.23	24	7	52
CBV1	CBV1	Cooling Beds Vent 1	Steel: 117 tons/hr	N/A	N/A	N/A	24	7	52
SPV1	SPV1	Spooler Vent 1	Steel: 117 tons/hr	N/A	N/A	N/A	24	7	52
FLXSL011	FLXSL011	Fluxing Agent Storage Silo No. 1	Fluxing Agent: 3000 scf/min	N/A	N/A	N/A	24	7	52
FLXSL012	FLXSL012	Fluxing Agent Storage Silo No. 2	Fluxing Agent: 3000 scf/min	N/A	N/A	N/A	24	7	52
CARBSL01	CARBSL01	Carbon Storage Silo No. 1	Coal/Coke: 2050 scf/min	N/A	N/A	N/A	24	7	52
DUSTSL01	DUSTSL01	EAF Baghouse Dust Silo	Baghouse Dust: 1300 scf/min	N/A	N/A	N/A	24	7	52
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	Scrap: 830 ton/hr	N/A	N/A	N/A	24	7	52
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	Scrap: 330 ton/hr	N/A	N/A	N/A	24	7	52
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	Scrap: 110 ton/hr	N/A	N/A	N/A	24	7	52
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	Scrap: 110 ton/hr	N/A	N/A	N/A	24	7	52
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	Fluxing Agent: 30 ton/hr	N/A	N/A	N/A	24	7	52
TR81	TR81	Outside Drop Points, Alloy Aggregate	Alloy Aggregate: 60 ton/hr	N/A	N/A	N/A	24	7	52
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	Removed Refractory / Other Materials: 25 ton/hr	N/A	N/A	N/A	24	7	52
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	Removed Refractory / Other Materials: 25 ton/hr	N/A	N/A	N/A	24	7	52
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	Slag: 100 ton/hr	N/A	N/A	N/A	24	7	52
TR11B1	TR11B1	SPP Material Transfers and Screens	Slag: 100 ton/hr	N/A	N/A	N/A	24	7	52
TR131	TR131	Outside Drop Points, Residual Scrap Pile	Residual Scrap: 25	N/A	N/A	N/A	24	7	52
TR141	TR141	Outside Drop Points, Mill Scale Pile	Mill Scale: 60 ton/hr	N/A	N/A	N/A	24	7	52
CR1	CR1	Ball Drop Crushing	Large Scrap: 8 ton/hr	N/A	N/A	N/A	24	7	52
W51A	W51A	ECS Scrap Building Storage Pile A	Scrap: 5900 sq. ft	N/A	N/A	N/A	24	7	52
W51B W51C	W51B W51C	ECS Scrap Building Storage Pile B ECS Scrap Building Storage Pile C	Scrap: 5400 sq. ft Scrap: 5300 sq. ft	N/A N/A	N/A N/A	N/A N/A	24 24	7	52 52
W51D	W51C	ECS Scrap Building Overage Scrap Pile	Scrap: 12100 sq. ft	N/A N/A	N/A N/A	N/A N/A	24	7	52
W51D W51E	W51D W51E	Outside Rail Scrap 5k Pile A	Scrap: 9100 sq. ft	N/A N/A	N/A N/A	N/A N/A	24	7	52
W51E W51F	W51E W51F	Outside Rail Scrap 5k Pile B	Scrap: 9100 sq. ft	N/A N/A	N/A	N/A	24	7	52
W51G	W51G	Outside Rail Scrap 5k Pile C	Scrap: 9100 sq. ft	N/A N/A	N/A	N/A	24	7	52
W51H	W51U W51H	Outside Rail Scrap 5k Pile D	Scrap: 9100 sq. ft	N/A	N/A	N/A	24	7	52
W51K	W51K	Outside Truck Scrap 5k Pile A	Scrap: 9100 sq. ft	N/A	N/A	N/A	24	7	52
W51L	W51L	Outside Truck Scrap 5k Pile B	Scrap: 9100 sq. ft	N/A	N/A	N/A	24	7	52
W51M	W51M	Outside Truck Scrap 5k Pile C	Scrap: 9100 sq. ft	N/A	N/A	N/A	24	7	52

Emission Uni	t Form Number:	1	3	4	6a	6g	7. Projec	ted operating	schedule:
Emission Unit ID	Emission Point ID	Name or Type and Model	Name(s) and Maximum Process Materials Charged	Name(s) and Maximum Material Produced	Type and Amount of Fuel(s) Burned	Proposed Maximum Design Heat Input (10 ⁶ BTU/hr)	Hours/Day	Days/Week	Weeks/Year
W51N	W51N	Outside Truck Scrap 5k Pile D	Scrap: 9100 sq. ft	N/A	N/A	N/A	24	7	52
W61	W61	Alloy Aggregate Storage Pile	Alloy Aggregate: 1000 sq. ft	N/A	N/A	N/A	24	7	52
W71A	W71A	SPP Slag Storage Pile	Slag: 29100 sq. ft	N/A	N/A	N/A	24	7	52
W71B	W71B	SPP Piles	SPP Product: 74100 sq. ft	N/A	N/A	N/A	24	7	52
W81	W81	Residual Scrap Storage Pile in Scrap Yard	Residual Scrap: 21200 sq. ft	N/A	N/A	N/A	24	7	52
W111	W111	Mill Scale Pile	Mill Scale: 3500 sq. ft	N/A	N/A	N/A	24	7	52
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	Water: 11000 gpm	N/A	N/A	N/A	24	7	52
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	Water: 11000 gpm	N/A	N/A	N/A	24	7	52
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	Water: 11000 gpm	N/A	N/A	N/A	24	7	52
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	Water: 11000 gpm	N/A	N/A	N/A	24	7	52
CTC1	CTC1A	Contact Cooling Tower - Cell 1	Water: 5500 gpm	N/A	N/A	N/A	24	7	52
CTC1	CTC1B	Contact Cooling Tower - Cell 2	Water: 5500 gpm	N/A	N/A	N/A	24	7	52
EGEN1	EGEN1	Emergency Generator 1	Diesel - 580 lb/hr	N/A	Diesel - 580 lb/hr	11.2	24	7	52
EFWP1	EFWP1	Emergency Fire Water Pump 1	Diesel - 109 lb/hr	N/A	Diesel - 109 lb/hr	2.1	24	7	52
TORCH1	TORCH1	Cutting Torches	Propane: 3.51 gal/hr Natural Gas: 130 scf/hr	N/A	Propane: 3.51 gal/hr Natural Gas: 130 scf/hr	0.32	24	7	52

	orm Number:	1		8	3. Projected	amount of p	ollutants				
				(Controlled Ei	nission Rate	es (lb/hr)				
Emission Unit ID	Emission Point ID	Name or Type and Model	@ Temp and Pressure (°F & psia)	NO _X	SO ₂	CO	PM ₁₀	Hydrocarbons	VOC	Lead	Fluorides
EAF1, LMS1	BH1	Meltshop Baghouse	176 °F / Ambient Pressure	45.63	49.14	936.00	29.92	35.10	35.10	0.19	1.17
EAF1, LMS1	CV1	Caster Vent	136 °F / Ambient Pressure	8.85	0.80	7.92	1.70	0.72	0.72	2.4E-03	1.5E-02
RMV1	RMV1	Rolling Mill Vent 1	122 °F / Ambient Pressure	1.17	9.0E-02	0.68	7.3E-02	8.2E-02	8.2E-02	-	-
CBV1	CBV1	Cooling Beds Vent 1	142 °F / Ambient Pressure	-	-	-	1.0E-02	1.0E-02	1.0E-02	-	_
SPV1	SPV1	Spooler Vent 1	142 °F / Ambient Pressure	-	_		1.0E-02	1.0E-02	1.0E-02	-	
FLXSL011	FLXSL011	Fluxing Agent Storage Silo No. 1	Ambient Temperature / Ambient Pressure	-	-	-	0.13	-	-	-	-
FLXSLO12	FLXSL012	Fluxing Agent Storage Silo No. 2	Ambient Temperature / Ambient Pressure	-	-	-	0.13	-	-	-	-
CARBSL01	CARBSL01	Carbon Storage Silo No. 1	Ambient Temperature / Ambient Pressure	-	-	-	8.8E-02	-	-	-	-
DUSTSL01	DUSTSL01	EAF Baghouse Dust Silo	Ambient Temperature / Ambient Pressure	-	-	-	5.6E-02	-	-	-	-
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	Ambient Temperature / Ambient Pressure	-	-	-	1.9E-02	-	-	-	-
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	Ambient Temperature / Ambient Pressure	-	-	-	1.5E-02	-	-	-	-
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	Ambient Temperature / Ambient Pressure	-	-	-	5.1E-03	-	-	-	-
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	Ambient Temperature / Ambient Pressure	-	-	-	5.1E-03	-	-	-	-
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	Ambient Temperature / Ambient Pressure	-	-	-	2.0E-03	-	-	-	-
TR81	TR81	Outside Drop Points, Alloy Aggregate	Ambient Temperature / Ambient Pressure	-	-	-	1.4E-03	-	-	-	-
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	Ambient Temperature / Ambient Pressure	-	-	-	2.3E-03	-	-	-	-
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	Ambient Temperature / Ambient Pressure	-	-	-	1.2E-02	-	-	-	-
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	Ambient Temperature / Ambient Pressure	-	-	-	2.9E-04	-	-	-	-
TR11B1	TR11B1	SPP Material Transfers and Screens	Ambient Temperature / Ambient Pressure	-	-	-	1.0E-02	-	-	-	-
TR131	TR131	Outside Drop Points, Residual Scrap Pile	Ambient Temperature / Ambient Pressure	-	-	-	2.3E-03	-	-	-	-
TR141	TR141	Outside Drop Points, Mill Scale Pile	Ambient Temperature / Ambient Pressure	-	-	-	2.1E-02	-	-	-	-
CR1	CR1	Ball Drop Crushing	Ambient Temperature / Ambient Pressure	-	-	-	4.3E-03	-	-	-	-
W51A	W51A	ECS Scrap Building Storage Pile A	Ambient Temperature / Ambient Pressure	-	-	-	9.4E-03	-	-	-	-
W51B	W51B	ECS Scrap Building Storage Pile B	Ambient Temperature / Ambient Pressure	-	-	-	8.6E-03	-	-	-	-
W51C	W51C	ECS Scrap Building Storage Pile C	Ambient Temperature / Ambient Pressure	-	-	-	8.5E-03	-	-	-	-
W51D	W51D	ECS Scrap Building Overage Scrap Pile	Ambient Temperature / Ambient Pressure	-	-	-	3.9E-02	-	-	-	-
W51E	W51E	Outside Rail Scrap 5k Pile A	Ambient Temperature / Ambient Pressure	-	-	-	2.9E-02	-	-	-	-
W51F	W51F	Outside Rail Scrap 5k Pile B	Ambient Temperature / Ambient Pressure	-	-	-	2.9E-02	-	-	-	-
W51G W51H	W51G W51H	Outside Rail Scrap 5k Pile C	Ambient Temperature / Ambient Pressure	-	-	-	2.9E-02	-	-	-	-
W51K	W51H W51K	Outside Rail Scrap 5k Pile D Outside Truck Scrap 5k Pile A	Ambient Temperature / Ambient Pressure Ambient Temperature / Ambient Pressure	-	-	-	2.9E-02 2.9E-02	-	-	-	-
W51L	W51K W51L	Outside Truck Scrap 5k Pile B	Ambient Temperature / Ambient Pressure	-	-	-	2.9E-02 2.9E-02	-	-	-	-
W51L W51M	W51L W51M	Outside Truck Scrap 5k Pile C	Ambient Temperature / Ambient Pressure		-	-	2.9E-02 2.9E-02	-	-	-	-

Emission Unit	Form Number:	1		8	3. Projected	amount of p	ollutants				
				0	Controlled E	mission Rate	es (lb/hr)	1			
Emission Unit ID	Emission Point ID	Name or Type and Model	@ Temp and Pressure (°F & psia)	NO _x	SO ₂	СО	PM ₁₀	Hydrocarbons	VOC	Lead	Fluorides
W51N	W51N	Outside Truck Scrap 5k Pile D	Ambient Temperature / Ambient Pressure	-	-	-	2.9E-02	-	-	-	-
W61	W61	Alloy Aggregate Storage Pile	Ambient Temperature / Ambient Pressure	-	-	-	8.5E-04	-	-	-	-
W71A	W71A	SPP Slag Storage Pile	Ambient Temperature / Ambient Pressure	-	-	-	0.11	-	-	-	-
W71B	W71B	SPP Piles	Ambient Temperature / Ambient Pressure	-	-	-	0.29	-	-	-	-
W81	W81	Residual Scrap Storage Pile in Scrap Yard	Ambient Temperature / Ambient Pressure	-	-	-	8.3E-02	-	-	-	-
W111	W111	Mill Scale Pile	Ambient Temperature / Ambient Pressure	-	-	-	6.9E-03	-	-	-	-
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	Ambient Temperature / Ambient Pressure	-	-	-	7.5E-02	-	-	-	-
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	Ambient Temperature / Ambient Pressure	-	-	-	7.5E-02	-	-	-	-
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	Ambient Temperature / Ambient Pressure	-	-	-	7.5E-02	-	-	-	-
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	Ambient Temperature / Ambient Pressure	-	-	-	7.5E-02	-	-	-	-
CTC1	CTC1A	Contact Cooling Tower - Cell 1	Ambient Temperature / Ambient Pressure	-	-	-	3.8E-02	-	-	-	-
CTC1	CTC1B	Contact Cooling Tower - Cell 2	Ambient Temperature / Ambient Pressure	-	-	-	3.8E-02	-	-	-	-
EGEN1	EGEN1	Emergency Generator 1	600 °F / Ambient Pressure	9.82	1.7E-02	9.21	0.53	0.70	0.70	-	-
EFWP1	EFWP1	Emergency Fire Water Pump 1	848 °F / Ambient Pressure	1.84	3.3E-03	1.73	0.10	0.13	0.13	-	-
TORCH1	TORCH1	Cutting Torches	848 °F / Ambient Pressure	4.6E-02	3.5E-03	2.6E-02	0.20	2.8E-03	2.8E-03	1.6E-07	-

Emission Unit	Form Number:	1	9. Proposed M	onitoring, Record	keeping, Reporti	ng, and Testin
Emission Unit ID	Emission Point ID	Name or Type and Model	Monitoring	Recordkeeping	Reporting	Testing
EAF1, LMS1	BH1	Meltshop Baghouse	See re	gulatory write-up in	n the application na	arrative
EAF1, LMS1	CV1	Caster Vent	See re	gulatory write-up ir	1 the application na	arrative
RMV1	RMV1	Rolling Mill Vent 1	See re	gulatory write-up ir	n the application na	arrative
CBV1	CBV1	Cooling Beds Vent 1	See re	gulatory write-up in	1 the application na	arrative
SPV1	SPV1	Spooler Vent 1	See re	gulatory write-up in	n the application na	arrative
FLXSLO11	FLXSL011	Fluxing Agent Storage Silo No. 1	See re	gulatory write-up in	n the application na	arrative
FLXSLO12	FLXSL012	Fluxing Agent Storage Silo No. 2	See re	gulatory write-up in	1 the application na	arrative
CARBSL01	CARBSL01	Carbon Storage Silo No. 1	See re	gulatory write-up ir	n the application na	arrative
DUSTSL01	DUSTSL01	EAF Baghouse Dust Silo	See re	gulatory write-up in	1 the application na	arrative
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	See re	gulatory write-up in	n the application na	arrative
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	See re	gulatory write-up in	n the application na	arrative
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	See re	gulatory write-up in	n the application na	arrative
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap		gulatory write-up in		
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	See re	gulatory write-up in	n the application na	arrative
TR81	TR81	Outside Drop Points, Alloy Aggregate	See reg	gulatory write-up in	n the application na	arrative
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	See re	gulatory write-up ir	1 the application na	arrative
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	See re	gulatory write-up in	n the application na	arrative
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	See reg	gulatory write-up in	n the application na	arrative
TR11B1	TR11B1	SPP Material Transfers and Screens		gulatory write-up in	A A	
TR131	TR131	Outside Drop Points, Residual Scrap Pile		gulatory write-up in		
TR141	TR141	Outside Drop Points, Mill Scale Pile		gulatory write-up in	11	
CR1	CR1	Ball Drop Crushing		gulatory write-up in		
W51A	W51A	ECS Scrap Building Storage Pile A		gulatory write-up in		
W51B	W51B	ECS Scrap Building Storage Pile B		gulatory write-up in		
W51C	W51C	ECS Scrap Building Storage Pile C		gulatory write-up in		
W51D	W51D	ECS Scrap Building Overage Scrap Pile		gulatory write-up in	<u> </u>	
W51E	W51E	Outside Rail Scrap 5k Pile A		gulatory write-up in		
W51F	W51F	Outside Rail Scrap 5k Pile B		gulatory write-up in gulatory write-up in		
W51G W51H	W51G W51H	Outside Rail Scrap 5k Pile C Outside Rail Scrap 5k Pile D		gulatory write-up if gulatory write-up if		
W51K	W51H W51K	Outside Kan Scrap Sk Pile D Outside Truck Scrap 5k Pile A		gulatory write-up in	<u> </u>	
W51L	W51L	Outside Truck Scrap 5k Pile B		gulatory write-up in	<u> </u>	
W51M	W51M	Outside Truck Scrap 5k Pile C		gulatory write-up in		

Attachment L - Emission Unit Data Sheet (General)

Emission Uni	t Form Number:	1	9. Proposed M	Ionitoring, Record	lkeeping, Reportii	ng, and Testing
Emission Unit ID	Emission Point ID	Name or Type and Model	Monitoring	Recordkeeping	Reporting	Testing
W51N	W51N	Outside Truck Scrap 5k Pile D	See re	gulatory write-up i	n the application na	arrative
W61	W61	Alloy Aggregate Storage Pile	See re	gulatory write-up i	n the application na	arrative
W71A	W71A	SPP Slag Storage Pile	See re	gulatory write-up i	n the application na	arrative
W71B	W71B	SPP Piles	See re	gulatory write-up i	n the application na	arrative
W81	W81	Residual Scrap Storage Pile in Scrap Yard	See re	gulatory write-up i	n the application na	arrative
W111	W111	Mill Scale Pile	See re	gulatory write-up i	n the application na	arrative
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	See re	gulatory write-up in	n the application na	arrative
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	See re	gulatory write-up in	n the application na	arrative
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	See re	gulatory write-up in	n the application na	arrative
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	See re	gulatory write-up in	n the application na	arrative
CTC1	CTC1A	Contact Cooling Tower - Cell 1	See re	gulatory write-up in	n the application na	arrative
CTC1	CTC1B	Contact Cooling Tower - Cell 2	See re	gulatory write-up in	n the application na	arrative
EGEN1	EGEN1	Emergency Generator 1	See re	gulatory write-up in	n the application na	arrative
EFWP1	EFWP1	Emergency Fire Water Pump 1	See re	gulatory write-up in	n the application na	arrative
TORCH1	TORCH1	Cutting Torches	See re	gulatory write-up in	n the application na	arrative

UNPAVED HAULROADS & PARKING AREAS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

		PM	PM-10
k =	Particle Size Multiplier	4.90	1.5
s =	Silt content of road surface material (%)	6	6
p =	Number of days per year with precipitation > 0.01 in.	150	150

Truck ID	Description	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Daily Miles Traveled (VMT/dav)	Annual Miles Traveled (VMT/yr)	Control Device ID Number	Control Efficiency (%)
TRK1	Off-Site to ECS Building Scrap Bay	27.5	<15 MPH	0	0	Watering	70
TRK2	Off-Site to Scrap Yard	27.5	<15 MPH	8.31	2,084.64	Watering	70
TRK3	Around Scrap Yard to Around Scrap Yard	31.0	<15 MPH	0	0	Watering	70
TRK4	Around Scrap Yard to Around Scrap Yard	27.5	<15 MPH	0	0	Watering	70
TRK5	Off-Site to Silos	27.5	<15 MPH	0.056	13.23	Watering	70
TRK6	Off-Site to Storage	31.0	<15 MPH	0	0	Watering	70
TRK7	Storage to Meltshop	6.0	<15 MPH	0	0	Watering	70
TRK8	Off-Site to Silos	27.5	<15 MPH	0.14	31.01	Watering	70
TRK9	Off-Site to Alloy Pile	27.5	<15 MPH	0	0	Watering	70
TRK10	Meltshop to Off-Site	27.5	<15 MPH	0	0	Watering	70
TRK11	Finished Products Storage to Off-Site	27.5	<15 MPH	0	0	Watering	70
TRK12	Off-Site to Gas Storage Area	6.0	<15 MPH	0	0	Watering	70
TRK13	Mill Scale Pile to Off-Site	27.5	<15 MPH	0	0	Watering	70
TRK14	Meltshop to Quench Building	31.0	<15 MPH	1.50	309.83	Watering	70
TRK15	Quench Building to SPP Area	31.0	<15 MPH	5.16	1,064.36	Watering	70
TRK16	Within SPP Area to Within SPP Area	34.5	<15 MPH	6.24	1,287.33	Watering	70
TRK17	SPP Area to Off-Site	27.5	<15 MPH	1.19	343.85	Watering	70
TRK18	Trailer Parking Area	15.0	<15 MPH	0	0	Watering	70
TRK19	General Support	34.5	<15 MPH	13.11	2,631.56	Watering	70

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

¹ Please refer to details in calculations

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) = lb/Vehicle Mile Traveled (VMT)$

Where:

		PM	PM-10
k =	Particle Size Multiplier	4.90	1.5
s =	Silt content of road surface material (%)	6	6
S =	Mean vehicle speed (mph)	<15 MPH	<15 MPH
W =	Mean vehicle weight (tons)	31.95	31.95
p =	Number of days per year with precipitation > 0.01 in.	150	150

For lb/hr: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] = lb/hr

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

						РМ	PM-10	
k =	Particle Size Multip	lier				4.90	1.5	
		SUMMARY OF	UNPAVE	D HAULRO	DAD EMISSI	ONS		-
		PM					PM-10	
	Uncontr	olled	Con	trolled	Unco	ntrolled	C	ontrolled
Truck ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
TRK1	0	0	0	0	0	0	0	0
TRK2	3.78	5.02	1.13	1.51	1.01	1.34	0.30	0.40
TRK3	0	0	0	0	0	0	0	0
TRK4	0	0	0	0	0	0	0	0
TRK5	0.23	0.032	0.068	0.010	0.061	0.008	0.018	0.0025
TRK6	0	0	0	0	0	0	0	0
TRK7	0	0	0	0	0	0	0	0
TRK8	0.23	0.075	0.068	0.022	0.061	0.020	0.018	0.0060
TRK9	0	0	0	0	0	0	0	0
TRK10	0	0	0	0	0	0	0	0
TRK11	0	0	0	0	0	0	0	0
TRK12	0	0	0	0	0	0	0	0
TRK13	0	0	0	0	0	0	0	0
TRK14	0.86	0.79	0.26	0.24	0.23	0.21	0.069	0.063
TRK15	2.97	2.70	0.89	0.81	0.79	0.72	0.24	0.22
TRK16	3.76	3.43	1.13	1.03	1.00	0.91	0.30	0.27
TRK17	0.81	0.83	0.24	0.25	0.22	0.22	0.065	0.07
TRK18	0	0	0	0	0	0	0	0
TRK19	14.83	7.02	4.45	2.10	3.95	1.87	1.19	0.56

UNPAVED HAULROADS & PARKING AREAS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Note: Extraneous information unrelated to regulatory requirements and air emissions has been excluded from the application form. Information labeled as "to be determined" (TBD) will be

Attachment L - Fugitive Emissions from Paved Haul Roads

INDUSTRIAL PAVED HAULROADS & PARKING AREAS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

s = Surface material silt content (g/m^2) 3.34

Truck ID	Description	Mean Vehicle Weight (tons)	Daily Miles Traveled (VMT/day)	Annual Miles Traveled (VMT/yr)	Control Device ID Number	Control Efficiency (%)
TRK1	Off-Site to ECS Building Scrap Bay	27.5	40.84	10,755	Watering + Sweeping	96
TRK2	Off-Site to Scrap Yard	27.5	17.95	4,501	Watering + Sweeping	96
TRK3	Around Scrap Yard to Around Scrap	31.0	14.96	3,751	Watering + Sweeping	96
TRK4	Around Scrap Yard to Around Scrap	27.5	14.96	3,751	Watering + Sweeping	96
TRK5	Off-Site to Silos	27.5	2.13	505	Watering + Sweeping	96
TRK6	Off-Site to Storage	31.0	2.61	302	Watering + Sweeping	96
TRK7	Storage to Meltshop	6.0	0.26	30	Watering + Sweeping	96
TRK8	Off-Site to Silos	27.5	5.33	1,184	Watering + Sweeping	96
TRK9	Off-Site to Alloy Pile	27.5	3.47	550	Watering + Sweeping	96
TRK10	Meltshop to Off-Site	27.5	1.22	63	Watering + Sweeping	96
TRK11	Finished Products Storage to Off-Site	27.5	207.21	54,562	Watering + Sweeping	96
TRK12	Off-Site to Gas Storage Area	6.0	5.21	982	Watering + Sweeping	96
TRK13	Mill Scale Pile to Off-Site	27.5	8.48	920	Watering + Sweeping	96
TRK14	Meltshop to Quench Building	31.0	4.20	866	Watering + Sweeping	96
TRK15	Quench Building to SPP Area	31.0	0	0	Watering + Sweeping	96
TRK16	Within SPP Area to Within SPP Area	34.5	0	0	Watering + Sweeping	96
TRK17	SPP Area to Off-Site	27.5	12.54	3,610	Watering + Sweeping	96
TRK18	Trailer Parking Area	15.0	10.90	2,756	Watering + Sweeping	96
TRK19	General Support	34.5	53.57	10,755	Watering + Sweeping	96

SUMMARY OF PAVED HAULROAD EMISSIONS

		J	РМ				PM-10	
	Uncon	trolled	Contro	olled	Uncon	trolled	Controlle	d
Truck ID	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
TRK1	1.98	4.67	0.079	0.19	0.40	0.93	0.016	0.037
TRK2	0.97	1.96	0.039	0.078	0.19	0.39	0.0077	0.016
TRK3	0.91	1.84	0.036	0.074	0.18	0.37	0.0073	0.015
TRK4	0.80	1.63	0.032	0.065	0.16	0.33	0.0064	0.013
TRK5	1.03	0.22	0.041	0.0088	0.21	0.044	0.0083	0.0018
TRK6	2.85	0.15	0.11	0.0059	0.57	0.030	0.023	0.0012
TRK7	0.05	0.00	0.0021	0.00011	0.011	0.00055	0.00042	0.000022
TRK8	1.03	0.51	0.041	0.021	0.21	0.10	0.0083	0.0041
TRK9	2.24	0.24	0.090	0.010	0.45	0.048	0.018	0.0019
TRK10	1.18	0.03	0.047	0.0011	0.24	0.0055	0.0094	0.00022
TRK11	8.36	23.71	0.33	0.95	1.67	4.74	0.067	0.19
TRK12	0.53	0.09	0.021	0.0036	0.11	0.018	0.0043	0.00072
TRK13	1.64	0.40	0.066	0.016	0.33	0.080	0.013	0.0032
TRK14	0.31	0.43	0.012	0.017	0.061	0.085	0.0024	0.0034
TRK15	0.00	0.00	0.000	0.000	0.00	0.00	0.0000	0.000
TRK16	0.00	0.00	0.000	0.000	0.000	0.00	0.0000	0.0000
TRK17	1.01	1.57	0.04	0.06	0.20	0.31	0.008	0.013

Note: Extraneous information unrelated to regulatory requirements and air emissions has been excluded from the application form. Information labeled as "to be determined" (TBD) will be

provided once specific equipment vendors have been selected.

Form Number:	2	3	4	5	6	7A	7B	7C	8	9A	9B	10A	10B	11A
	Tank Name	Tank Equipment Identification No. (As Assigned on Equipment List Form)	Emission Point Identification No. (As Assigned on Equipment List Form)	Commencemen t of Construction	Type of Change	Does the Tank Have More Than One Mode of Operation? (e.g., Is There More Than One Product Stored in the Tank?)	If YES, Explain and Identify Which Mode is Covered by this Application (Note: A Separate Form Must be Completed for Each Mode).	Provide Any Limitations on Source Operation Affecting Emissions, Any Work Practice Standards (e.g. Production Variation, etc.)	Design Capacity (gal)	Tank Internal Diameter (ft)	Tank Internal Height (or Length) (ft)	Maximum Liquid Height (ft)	Average Liquid Height (ft)	Maximum Vapor Space Height (ft)
	Diesel Storage Tank for Emergency Generator No.	DSLTK-GEN1	DSLTK-GEN1	N/A	New Construction	No	N/A	N/A	500	4	6	5	3	6
	Diesel Storage Tank for Fire Water Pump No. 1	DSLTK-FWP1	DSLTK-FWP1	N/A	New Construction	No	N/A	N/A	500	4	6	5	3	6
	Supporting On-Site	DSLTK-VEH	DSLTK-VEH	N/A	New Construction	No	N/A	N/A	5,000	8.5	12.6	11.6	6.3	12.6

Attachment L - Emission Unit Data Sheet (Storage Tanks)

Form Number:	2	3	4	11B	12	13A	13B	14	16	18	20A	20B	20C	22A	22B	22C
	Tank Name	Tank Equipment Identification No. (As Assigned on Equipment List Form)	Emission Point Identification No. (As Assigned on Equipment List Form)	Average Vapor Space	Nominal Capacity (gal)	Maximum Annual Throughput (gal/yr)	Maximum Daily Throughput (gal/day)		Tank Fill Method	Type of Tanks (Select All that Apply)	Shell Color	Roof Color	Year Last Painted	Is the tank heated?	If YES, Provide the Operating Temperature (°F)	If YES, Please Describe How Heat is Provided to Tank
	Diesel Storage Tank for Emergency Generator No.	DSLTK-GEN1	DSLTK-GEN1	3	500	25,000	500	50	TBD	Horizontal Fixed Roof	TBD	TBD	N/A	No	N/A	N/A
	Diesel Storage Tank for Fire Water Pump No. 1	DSLTK-FWP1	DSLTK-FWP1	3	500	25,000	500	50	TBD	Horizontal Fixed Roof	TBD	TBD	N/A	No	N/A	N/A
	Supporting On-Site	DSLTK-VEH	DSLTK-VEH	6.3	5,000	250,000	5,000	50	TBD	Vertical Fixed Roof	TBD	TBD	N/A	No	N/A	N/A

Form Number:	2	3	4	24A	24B	27	28	29	30	31	32	33	34A	34B	35A
		Tank											Minimum	Maximum	Minimum
		Equipment	Emission Point				Daily	Annual	Annual		Annual		Average	Average	Average
		Identification	Identification		For Cone	Provide the City	Average	Average	Average		Average Solar		Daily	Daily	Operating
		No. (As	No. (As	Roof,	Roof,	and State on	Ambient	Maximum	Minimum	_	Insulation		-	Temperature	
		Assigned on	Assigned on	Provide	Provide	Which the Data	Temperatur	Temperatur	Temperatur		Factor		0	Range of Bulk	U
		Equipment List			-	in this Section	е	е	е		(BTU/(ft ² ·day)		Liquid	Liquid	Tank
	Tank Name	Form)	Form)	(ft)	(ft/ft)	are Based	(°F)	(°F)	(°F)	(miles/hr))	(psia)	(°F)	(°F)	(psig)
	Diesel Storage Tank for Emergency Generator No.	DSLTK-GEN1	DSLTK-GEN1	N/A	N/A	Martinsburg, West Virginia							See S	Storage Tank En	nissions Calculat
	Diesel Storage Tank for Fire Water Pump No. 1	DSLTK-FWP1	DSLTK-FWP1	N/A	N/A	Martinsburg, West Virginia							See S	Storage Tank En	nissions Calculat
	Supporting On-Site	DSLTK-VEH	DSLTK-VEH	N/A	0.0625	Martinsburg, West Virginia							See S	Storage Tank En	nissions Calculat

Form Number:	2	3	4	35B	36A	36B	37A	37B	38A	38B	39	. Provide th	e following for	each liquid o
	Tank Name	Tank Equipment Identification No. (As Assigned on Equipment List Form)	Emission Point Identification No. (As Assigned on Equipment List Form)	Operating Pressure Range of	Minimum Liquid Surface Temperature (°F)	Corresponding Vapor Pressure (psia)	-	Corresponding Vapor Pressure (psia)	-			Liquid Density (lb/gal)	Vapor Molecular Weight (lb/lb-mole)	Maximum True Vapor Pressure (psia)
	Diesel Storage Tank for Emergency Generator No.	DSLTK-GEN1		ions Workshee	ts						Diesel	7.1	0	0.25
	Diesel Storage Tank for Fire Water Pump No. 1	DSLTK-FWP1	DSLTK-FWP1	ions Workshee	ts						Diesel	7.1	0	0.25
	Supporting On-Site	DSLTK-VEH	DSLTK-VEH	ions Workshee	ts						Diesel	7.1	0	0.25

Form Number:	2	3	4	r gas to be st	ored in tank		40		-			issions calculations, applicable.)
	Tank Name	Tank Equipment Identification No. (As Assigned on Equipment List Form)	Emission Point Identification No. (As Assigned on Equipment List Form)	Maximum	Months Storage per Year (Start)	Months Storage per Year (End)		Material Name & CAS No.		Working Loss (lb/yr)	Annual Loss (lb/yr)	Estimation Method
	Diesel Storage Tank for Emergency Generator No.	DSLTK-GEN1	DSLTK-GEN1	N/A	January	December	Does Not Apply	Diesel	0.29	188.00	0.72	EPA Emission Factor
	Diesel Storage Tank for Fire Water Pump No. 1	DSLTK-FWP1	DSLTK-FWP1	N/A	January	December	Does Not Apply	Diesel	0.29	188.00	0.72	EPA Emission Factor
	Supporting On-Site	DSLTK-VEH	DSLTK-VEH	N/A	January	December	Does Not Apply	Diesel	2.85	188.00	7.18	EPA Emission Factor

15. ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEETS

Form N	lumber:	1	5	11	14. Opera	tion Hours	16	21.	22	24		26	31	32. Propose	d Monitoring, Reco	ordkeeping, Rej	porting, and
											Emission rate of pollutant (specify) into and out of		Have you included Baghouse				
									Type of	collector at maximum		II	Control Device				
							Gas flow		pollutant(s) to be collected	design operating		How is filter monitored for	in the Emissions				
							rate into the		(if particulate	conditions		indications of	Points Data				
Control		Manufacturer	Baghouse	Baghouse	Max. per	-	collector	Outlet	give specific	Pollutant	Outlet (gr/dscf)	deterioration	Summary	Manitaniaa	Desculles anima	Dementing	Ttim -
Device ID	Point ID	and Model No.	Configuration	Operation	Day	Year	(dscfm)	(gr/scf)	type)	Tonutant	(gi/usei)	(e.g., broken bags)?	Sheet?	Monitoring	Recordkeeping	Reporting	Testing
BH1-BH	BH1	TBD	TBD	Continuous	24	8,760	671,192	See Details	PM, PM ₁₀ & PM _{2.5}	Filterable PM Total PM Total PM ₁₀ Total PM _{2.5}	0.0018 0.0052 0.0052 0.0052	Other, specify: BLDS	Yes	See regu	ılatory write-up in t	he application n	arrative.

16. ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

The proposed micro mill and associated operations are expected to generate emissions of the following pollutants:

- Particulate matter (PM);
- ▶ Particulate matter with an aerodynamic diameter of less than 10 microns (PM₁₀);
- ▶ Particulate matter with an aerodynamic diameter of less than 2.5 microns (PM_{2.5});
- Nitrogen oxides (NOX);
- Carbon monoxide (CO);
- Volatile organic compounds (VOCs);
- Sulfur dioxide (SO₂);
- Lead (Pb);
- Fluorides excluding hydrogen fluoride (HF);
- ► Greenhouse gases (GHGs), including carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O); and
- ► Hazardous air pollutants (HAPs).

The following sections contain a detailed description of the methodology used to calculate emissions for the proposed emission units and processes at the Facility. Detailed emission calculations for the Project are included in Appendix A. A summary of the Project's proposed hourly and annual PTE is provided in Table 3-1 and Table 3-2 below.

							Н	ourly PTE	(lb/hr)					
Emission Unit ID	Emission Point ID	Emission Point Description	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NOx	со	voc	SO 2	Pb	Max Single HAP ²	Total HAP	Fluorides
	L			Meltsho	, p		<u> </u>		1	I	4			1
EAF1, LMS1	BH1	Meltshop Baghouse	10.36	29.92	29.92	29.92	45.63	936.00	35.10	49.14	0.19	0.44	0.83	1.17
EAF1, LMS1, CAST1	CV1	Caster Vent	1.12	1.70	1.70	1.70	8.85	7.92	0.72	0.80	0.0024	0.11	0.12	0.015
, ,	1		1 1	Rolling N	1111		11							
RMV1	RMV1	Rolling Mill Vent ¹	0.028	0.073	0.073	0.073	1.17	0.68	0.082	0.090	-	0.015	0.015	-
CBV1	CBV1	Cooling Beds Vent ¹	0.010	0.010	0.010	0.010	-	-	0.010	-	-	-	-	-
SPV1	SPV1	Spooler Vent ¹	0.010	0.010	0.010	0.010	_		0.010	_	_	_	_	_
51 11	51 41			aterial Stora		0.010			0.010					
FLXSLO11	FLXSLO11	Fluxing Agent Storage Silo No. 1	0.13	0.13	0.13	0.13			-	_	_	_	_	_
FLXSL012	FLXSL011	Fluxing Agent Storage Silo No. 2	0.13	0.13	0.13	0.13	-	-	-	-	_	_	_	-
CARBSLO1	CARBSLO1	Carbon Storage Silo No. 1	0.088	0.088	0.088	0.088	-	-	-	_	_	_	_	_
DUSTSL01	DUSTSL01	EAF Baghouse Dust Silo	0.056	0.056	0.056	0.056	-	-	-	_	_	_	_	_
DOSTSEOI	DUSTISEUT			Material Ha		0.050								
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	0.041	0.041	0.0194	0.00294		-	-	_	_	-	_	-
TR51A	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	0.033	0.033	0.015	0.0023	-	-	-		-	-		-
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	0.011	0.011	0.005	0.0008	-	-	-	-	_	-	_	_
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	0.011	0.011	0.005	0.0008	-	_	-	-	-	-	_	-
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	0.0042	0.0042	0.0020	0.00030	-	-	-	-	-	-	-	-
TR81	TR81	Outside Drop Points, Alloy Aggregate	0.0030	0.0030	0.0014	0.00021	-	-	-	-	-	-	-	-
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	0.0049	0.0049	0.0023	0.00035	-	-	-	-	-	-	-	-
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	0.0247	0.0247	0.012	0.0018	-	-	-	-	-	-	-	-
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	0.00061	0.00061	0.00029	0.00004	-	-	-	-	-	-	-	-
TR11B1	TR11B1	SPP Material Transfers and Screens	0.023	0.023	0.010	0.0015	-	-	-	-	-	-	-	-
TR131	TR131	Outside Drop Points, Residual Scrap Pile	0.0049	0.0049	0.0023	0.00035	-	-	-	-	-	-	-	-
TR141	TR141	Outside Drop Points, Mill Scale Pile	0.045	0.045	0.0211	0.00319	-	-	-	-	-	-	-	-
CR1	CR1	Ball Drop Crushing	0.0096	0.0096	0.0043	0.00080	-	-	-	-	-	-	-	-
			M	aterial Stora	ige Piles		<u> </u>			-		-1		- 1
W51A	W51A	ECS Scrap Building Storage Pile A	0.019	0.019	0.009	0.0014	-	-	-	-	-	-	-	-
W51B	W51B	ECS Scrap Building Storage Pile B	0.017	0.017	0.009	0.0013	-	-	-	-	-	-	-	-
W51C	W51C	ECS Scrap Building Storage Pile C	0.017	0.017	0.008	0.0013	-	-	-	-	-	-	-	-
W51D	W51D	ECS Scrap Building Overage Scrap Pile	0.077	0.077	0.039	0.0059	-	-	-	-	-	-	-	-
W51E	W51E	Outside Rail Scrap 5k Pile A	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51F	W51F	Outside Rail Scrap 5k Pile B	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51G	W51G	Outside Rail Scrap 5k Pile C	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51H	W51H	Outside Rail Scrap 5k Pile D	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51K	W51K	Outside Truck Scrap 5k Pile A	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51L	W51L	Outside Truck Scrap 5k Pile B	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51M	W51M	Outside Truck Scrap 5k Pile C	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51N	W51N	Outside Truck Scrap 5k Pile D	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W61	W61	Alloy Aggregate Storage Pile	0.0017	0.0017	0.0009	0.00013	-	-	-	-	-	-	-	-
W71A	W71A	SPP Slag Storage Pile	0.23	0.23	0.11	0.017	-	-	-	-	-	-	-	-
W71B	W71B	SPP Piles	0.58	0.58	0.29	0.044	-	-	-	-	-	-	-	-
W81	W81	Residual Scrap Storage Pile in Scrap Yard	0.17	0.17	0.083	0.013	-	-	-	-	-	-	-	-

Table 16-1. Summary of Application Proposed Hourly PTE

W111	W111	Mill Scale Pile	0.014	0.014	0.0069	0.0010	-	-	-	-	-	-	-	-
				Cooling To	wers									
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTC1	CTC1A	Contact Cooling Tower - Cell 1	0.055	0.055	0.038	0.00012	-	-	-	-	-	-	-	-
CTC1	CTC1B	Contact Cooling Tower - Cell 2	0.055	0.055	0.038	0.00012	-	-	-	-	-	-	-	-
Haulroads														
PR1	PR1	Paved Roads	1.34	1.34	0.27	0.066	-	-	-	-	-	-	-	-
UR1	UR1	Unpaved Roads	8.24	8.24	2.20	0.22	-	-	-	-	-	-	-	-
				Auxiliary Equ	ipment									
EGEN1	EGEN1	Emergency Generator 1	0.53	0.53	0.53	0.53	9.82	9.21	0.70	0.017	-	0.013	0.043	-
EFWP1	EFWP1	Emergency Fire Water Pump 1	0.10	0.10	0.10	0.10	1.84	1.73	0.13	0.0033	-	0.0025	0.0081	-
DSLTK-GEN1	DSLTK-GEN1	Diesel Storage Tank for Emergency Generator No. 1	-	-	-	-	-	-	0.015	-	-	0.0060	0.0078	-
DSLTK-FWP1	DSLTK-FWP1	Diesel Storage Tank for Fire Water Pump No. 1	-	-	-	-	-	-	0.015	-	-	0.0060	0.0078	-
DSLTK-VEH	DSLTK-VEH	Diesel Storage Tank Supporting On-Site Vehicles	-	-	-	-	-	-	0.15	-	-	0.060	0.078	-
TORCH1	TORCH1	Cutting Torches	0.20	0.20	0.20	0.20	0.046	0.026	0.0028	0.0035	1.57E-07	5.67E-04	5.95E-04	-
Total	Total		24.68	44.87	36.67	33.35	67.36	955.56	36.94	50.05	0.19	0.65	1.12	1.18

¹ Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.

² Max Single HAP is: Manganese.

Table 16-2. Summary of Application Proposed Annual PTE

			Annual PTE (tpy)												
Emission Unit ID	Emission Point ID	Emission Point Description	Filterable PM	Total PM	Total PM10	Total PM _{2.5}	NOx	со	voc	SO ₂	Pb	Fluorides	Max Single HAP ⁵	Total HAP	CO ₂ e
				l	Melts	hop			4		1				
EAF1, LMS1	BH1	Meltshop Baghouse	45.36	131.03	131.03	131.03	97.50	1,300	97.50	97.50	0.52	3.25	1.21	2.31	119,513
EAF1, LMS1, CAST1	CV1	Caster Vent	3.51	5.96	5.96	5.96	36.03	25.80	2.75	3.00	0.0066	0.041	0.44	0.49	35,348
		·		•	Rolling	, Mill									
RMV1	RMV1	Rolling Mill Vent ¹	0.050	0.152	0.152	0.152	2.63	1.52	0.172	0.20	-	-	0.033	0.034	2,575
CBV1	CBV1	Cooling Beds Vent ¹	0.010	0.010	0.010	0.010	-	-	0.010	-	-	-	-	-	-
SPV1	SPV1	Spooler Vent ¹	0.010	0.010	0.010	0.010	-	-	0.010	-	-	-	-	-	-
					Material Sto							1 1			
FLXSLO11	FLXSLO11	Fluxing Agent Storage Silo No. 1	0.064	0.064	0.064	0.064	-	-	-	-	-	-	-	-	-
FLXSLO12	FLXSLO12	Fluxing Agent Storage Silo No. 2	0.064	0.064	0.064	0.064	-	-	-	-	-	-	-	-	-
CARBSLO1	CARBSLO1	Carbon Storage Silo No. 1	0.044	0.044	0.044	0.044	-	-	-	-	-	-	-	-	-
DUSTSL01	DUSTSLO1	EAF Baghouse Dust Silo	0.24	0.24	0.24	0.24	-	-	-	-	-	-	-	-	-
		·		•	Material H	landling								•	
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	0.084	0.084	0.040	0.0060	-	-	-	-	-	-	-	-	-
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	0.11	0.11	0.050	0.0076	-	-	-	-	-	-	-	-	-
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	0.035	0.035	0.017	0.0025	-	-	-	-	-	-	-	-	-
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	0.035	0.035	0.017	0.0025	-	-	-	-	-	-	-	-	-
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	0.0021	0.0021	0.0010	0.00015	-	-	-	-	-	-	-	-	-
TR81	TR81	Outside Drop Points, Alloy Aggregate	0.00024	0.00024	0.00011	0.000017	-	-	-	-	-	-	-	-	-
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	0.00028	0.00028	0.00013	0.000020	-	-	-	-	-	-	-	-	-
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	0.0014	0.00139	0.00066	0.00010	-	-	-	-	-	-	-	-	-
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	0.00056	0.00056	0.00026	0.000040	-	-	-	-	-	-	-	-	-
TR11B1	TR11B1	SPP Material Transfers and Screens	0.021	0.021	0.010	0.0013	-	-	-	-	-	-	-	-	-
TR131	TR131	Outside Drop Points, Residual Scrap Pile	0.00028	0.00028	0.00013	0.000020	-	-	-	-	-	-	-	-	-
TR141	TR141	Outside Drop Points, Mill Scale Pile	0.0036	0.0036	0.0017	0.00026	-	-	-	-	-	-	-	-	-
CR1	CR1	Ball Drop Crushing	0.0049	0.0049	0.0022	0.00041	-	-	-	-	-	-	-	-	-
			0.000		Material Sto									r	
W51A	W51A	ECS Scrap Building Storage Pile A	0.083	0.083	0.041	0.0062	-	-	-	-	-	-	-	-	-
W51B	W51B	ECS Scrap Building Storage Pile B	0.076	0.076	0.038	0.0057	-	-	-	-	-	-	-	-	-
W51C W51D	W51C W51D	ECS Scrap Building Storage Pile C	0.074	0.074 0.34	0.037 0.17	0.0056 0.026	-	-	-	-	-	-	-	-	-
W51D W51E	W51D W51E	ECS Scrap Building Overage Scrap Pile Outside Rail Scrap 5k Pile A	0.34	0.34	0.17	0.028	-	-	-	-	-		-	-	-
W51F	W51E	Outside Rail Scrap 5k Pile B	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51F W51G	W51G	Outside Rail Scrap 5k Pile C	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51G	W51H	Outside Rail Scrap 5k Pile D	0.25	0.25	0.13	0.019	-		-	-	-	-	-	-	
W51K	W51K	Outside Truck Scrap 5k Pile A	0.25	0.25	0.13	0.019	-	-	-	_	_	-	-	-	-
W51L	W51L	Outside Truck Scrap 5k Pile B	0.25	0.25	0.13	0.019	-	-	-	-	_	-	-	-	-
W51M	W51M	Outside Truck Scrap 5k Pile C	0.25	0.25	0.13	0.019	_	-	-	_	_	-	_	-	_
W51N	W51N	Outside Truck Scrap 5k Pile D	0.25	0.25	0.13	0.019	-	-	-	_	-		-	-	
W61	W61	Alloy Aggregate Storage Pile	0.0075	0.0075	0.0037	0.00057	-	_	_	-	-	-	-	-	_
W71A	W71A	SPP Slag Storage Pile	1.00	1.00	0.50	0.076	-	-	-	-	-	-	-	-	-
		· · · · · · · · · · ·	*	*		*				I	1	1		1	1

4															
W71B	W71B	SPP Piles	2.55	2.55	1.28	0.19	<u> </u>	<u> </u>	<u> </u>	-	-	-	-	-	-
W81	W81	Residual Scrap Storage Pile in Scrap Yard	0.73	0.73	0.37	0.055	-	-	-	-	-	-	-	-	-
W111	W111	Mill Scale Pile	0.060	0.060	0.030	0.0046	-	-	۱ <u> </u>	 		-		<u> </u>	-
Cooling Towers															
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	0.48	0.48	0.33	0.0010	-	<u> </u>	<u>-</u> ا		-	-	-	-	-
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	0.48	0.48	0.33	0.0010	-	-	۱ <u> </u>	-	-	-	-	-	-
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	0.48	0.48	0.33	0.0010	-	-	-	-	-	-	-	<u> </u>	-
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	0.48	0.48	0.33	0.0010	-	-	-		-	-	-	-	-
CTC1	CTC1A	Contact Cooling Tower - Cell 1	0.24	0.24	0.16	0.0005	-	-		-	-	-	-	-	-
CTC1	CTC1B	Contact Cooling Tower - Cell 2	0.24	0.24	0.16	0.0005	-	-	·		-	-		-	-
Haulroads															
PR1	PR1	Paved Roads	1.76	1.76	0.35	0.086	I - T	ı	-	-	-	-	-	-	- 1
UR1	UR1	Unpaved Roads	5.97	5.97	1.59	0.16	-	-	- +	-	-	-	-	-	-
		<u> </u>	<u>.</u>		Auxiliary E	quipment		·						·	
EGEN1	EGEN1	Emergency Generator 1	0.026	0.026	0.026	0.026	0.49	0.460	0.035	0.00087	-	-	0.00066	0.0022	91.62
EFWP1	EFWP1	Emergency Fire Water Pump 1	0.0049	0.0049	0.0049	0.0049	0.09	0.086	0.007	0.00016	-	-	0.00012	0.00041	17.18
DSLTK-GEN1	DSLTK-GEN1	Diesel Storage Tank for Emergency Generator No. 1	-	-	'	-	-	-	0.00036	-	-	-	0.000144	0.000188	-
DSLTK-FWP1	DSLTK-FWP1		-	-	'	-	-	-	0.00036	-	-	-	0.000144	0.000188	-
DSLTK-VEH	DSLTK-VEH	Diesel Storage Tank Supporting On-Site Vehicles	II	I <u> </u>	I	·	<u> </u>	۱ <u> </u>	0.0036	 	-	-	0.00142	0.00186	-
TORCH1	TORCH1	Cutting Torches	0.20	0.20	0.20	0.20	9.13E-02	5.29E-02	5.62E-03	7.02E-03	3.15E-07	-	1.13E-03	1.19E-03	89.39
Total	Total	· · · · · · · · · · · · · · · · · · ·	67	155	145	139	137	1,328	100	101	0.53	3.29	1.69	2.84	157,635
					Major NSR A	Applicability									
Pollutant Attainment Sta	.catus			-	Attainment	Attainment	Attainment	Attainment	Attainment	Attainment	Attainment	-	-	-	-
Potentially Applicable Major NSR Program		PSD	-	PSD	PSD	PSD	PSD	PSD	PSD	PSD	PSD	-	-	PSD	
Major NSR "Major Source	rce" Threshold ²	2, 4	100	-	100	100	100	100	100	100	100	100	-		-
Title V Threshold ⁴			100	-	100	100	100	100	100	100	-	-	10	25	100,000
Project Exceeds Major N	NSR "Major So	arce" Threshold?	No	'	Yes	Yes	Yes	Yes	Yes	Yes	No	No			No
Project Exceeds Title V			No	-	Yes	Yes	Yes	Yes	Yes	Yes	-	-	No	No	Yes
PSD Significant Emission	ວn Rates (SERs)	ر ٦	25	-	15	10	40	100	40	40	0.6	3	-	-	75,000
Project Meets or Exceed	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	-	- 1	Yes		
¹ Emissic	¹ Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.													44	'ı

Ites
 <li

16.1 Electric Arc Furnace (EAF) and Ladle Metallurgy Station (LMS)

The proposed EAF and LMS have the potential to emit criteria pollutants, fluorides excluding hydrogen fluoride (HF), GHGs, and HAPs. The majority of emissions from the EAF and the LMS are captured by the systems and efficiencies summarized in Table 16-3. The remaining emissions not captured at the EAF, LMS, canopy hood and building have the potential to exit through the caster vent. Estimation of fugitive emissions from the caster vent are based on the melting and refining operation mode in Table 16-3 and methodology below. Note that the following methodology is for illustrative purposes to support this permit application and associated dispersion modeling.

	Capture	System 8	Efficiency ¹	Emissions Intensity (lb/ton) ²							
				Emissions)/ton) -						
Operation Mode	DEC	Canopy Hood	Building Enclosure	Uncontrolled	Non- Particulate Fugitive	Particulate Fugitive					
Melting and Refining	Active (95%)	Active (95%)	Active (90%)	38	0.095	0.0095					
Charging, Tapping, and Slagging	Inactive (0%)	Active (95%)	Active (90%)	1.4	0.070	0.0070					

Table 16-3. EAF & LMS Capture Efficiencies

¹ DEC and Canopy Hood capture efficiency based on BACT for similar facilities.

² Emission intensity per Energy and Environmental Profile of the U.S. Iron and Steel Industry, U.S. Department of Energy (Aug. 2000), Table 5-3, for EAF (melting, refining, charging, tapping, and slagging alloy steel).

Note that only "Particulate" is listed in the Table 5-3 under the rows for both "Melting and Refining" and "Charging, Tapping, and Slagging".

Therefore, "Particulate" is used as an indicator of emission intensity during the various EAF operation modes.

- ► For estimation of fugitive emissions of particulate matter (i.e., Filterable PM, Total PM₁₀, and Total PM_{2.5}):
 - Assuming the EAF/LMS generated X mass of particulate emissions.
 - 95% of X will be captured by the DEC and routed to the baghouse while the remaining 5% of X will be released inside the meltshop.
 - Of this 5% of X, 95% will be capture by the canopy and routed to the baghouse while the remaining 5% will be released inside the building.
 - Therefore:
 - The total emissions routed to the baghouse are 0.95X (from DEC) + 0.95 x 0.05X (from the canopy), or 99.75% of X.
 - The total emissions released inside the building are 0.05 x 0.05X, or 0.25% of X
 - The baghouse control efficiency is estimate to be 98% while the building efficiency is estimated to be 90%. Therefore:
 - The total emissions released from the baghouse are 2% of 99.75% of X, or 1.995% of X.
 - The total emissions released from the building are 10% of 0.25% of X, or 0.025% of X.
 - Based on the above considerations, fugitive particulate emissions are estimated by dividing the emissions from the baghouse by 1.995% and multiplying by 0.025%.
- ► For estimation of fugitive emissions of gaseous pollutants:
 - Assuming the EAF/LMS generated X mass of gaseous emissions.

- 95% of X will be captured by the DEC and routed to the baghouse while the remaining 5% of X will be released inside the meltshop.
- Of this 5% of X, 95% will be capture by the canopy and routed to the baghouse while the remaining 5% will be released inside the building.
- Therefore:
 - The total emissions routed to the baghouse are 0.95X (from DEC) + 0.95 x 0.05X (from the canopy), or 99.75% of X.
 - The total emissions released inside the building are 0.05 x 0.05X, or 0.25% of X
- It is conservatively assumed that the baghouse and building have no capture or control efficiency for gaseous pollutants. Therefore:
 - The total emissions released from the baghouse are 99.75% of X.
 - The total emissions released from the building are 0.25% of X.
- Based on the above considerations, fugitive gaseous emissions are estimated by dividing the emissions from the baghouse by 99.75% and multiplying by 0.25%.

16.1.1 PM Emissions

Emissions of PM, PM_{10} , and $PM_{2.5}$ from the meltshop baghouse are calculated based on the outlet baghouse grain loading proposed as BACT and the anticipated air flow rate to the baghouse. The grain loading proposed as BACT is discussed in more detail in Section 23 of the application. Note that pursuant to 77 FR 65107, October 25, 2012, calculated PM emissions include filterable particulate emissions only whereas PM_{10} and $PM_{2.5}$ include both filterable and condensable fractions.

At the time of application, project engineering was still in progress and the flowrate has not been finalized. The flowrate presented in this application is the maximum anticipated and incorporates a conservative buffer. The final equipment flowrate will be at or under this flowrate representation.

Hourly and annual emissions of PM, PM₁₀, and PM_{2.5} from the meltshop baghouse are calculated according to the following equations:

Hourly Emissions
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor $\left(\frac{gr}{dscf}\right)$ x Flow Rate $\left(\frac{dscf}{min}\right)$ x $\frac{1}{7,000}\left(\frac{lb}{gr}\right)$ x 60 $\left(\frac{min}{hr}\right)$
Annual Emissions $\left(\frac{ton}{yr}\right)$ = Hourly Emissions $\left(\frac{lb}{hr}\right)$ x 8,760 $\left(\frac{hr}{yr}\right)$ x $\frac{1}{2,000}\left(\frac{ton}{lb}\right)$

The hourly and annual emission for uncaptured emissions from the EAF and LMS is calculated using the methodology noted above.

16.1.2 Criteria Pollutants (Except for PM) and Fluoride Emissions

Emissions of NO_x, CO, VOC, SO₂, Pb, and fluorides excluding hydrogen fluoride (HF) from the proposed meltshop baghouse are calculated based on emission factors and proposed micro mill's anticipated steel production rate. The emission limits proposed as BACT for NO_x, CO, VOC, SO₂, and Pb are used as short-term emission factors to calculate hourly and annual emissions.⁹ The emission limits proposed as BACT are discussed in more detail in Section 23 of this application. Note that short-term emissions of NO_x, SO₂,

⁹ As noted in item 7c of the EPA letter to Colorado Department of Public Health and Environment, Ref: 8P-AR, concerning "Proposed Short Term Limits Policy."

and CO incorporate the following short-term variability factors based on process knowledge and engineering estimates:

- NOx short-term variability factor = 1.3
- CO short-term variability factor = 2.0
- SO₂ short-term variability factor = 1.4

The fluorides emission factor is based on process knowledge and a review of the Reasonably Available Control Technology (RACT)/BACT/Lowest Achievable Emission Reduction (LAER) Clearinghouse (RBLC).

Hourly and annual emissions of NO_x, CO, VOC, SO₂, Pb, and fluorides from the proposed meltshop baghouse are calculated according to the following equations:

Hourly Emissions
$$\left(\frac{lb}{hr}\right)$$
 = Short Term EF $\left(\frac{lb}{ton}\right)$ x Hourly Steel Production $\left(\frac{ton}{hr}\right)$
Annual Emissions $\left(\frac{ton}{yr}\right)$ = Long Term EF $\left(\frac{lb}{ton}\right)$ x Annual Steel Production $\left(\frac{ton}{yr}\right)$ x $\frac{1}{2,000}\left(\frac{ton}{lb}\right)$

Where,

EF = Emission factor

Uncaptured short-term and long-term emission factors for emissions of NO_x, CO, VOC, SO₂, Pb, and fluorides from the proposed EAF and LMS and the uncaptured emission factors for emissions of fluorides from the EAF are calculated using the methodology noted above.

16.1.3 GHG Emissions

Emissions of GHGs are calculated as emissions of CO_2 and then converted to CO_2e . Annual CO_2e emissions from the proposed EAF and LMS are calculated using the CO_2 emission factor, annual proposed steel production rate, and the global warming potential (GWP) of CO_2 from Table A-1 of 40 CFR Part 98. The CO_2 emission factor is determined from stack tests performed on a similar baghouse at CMC's Durant, OK and Mesa, AZ facilities (other ECS micro-mills which are substantially similar to the proposed Project). The stack gas CO_2 concentration and moisture content measured during the source tests are used to develop the CO_2 emission rate using the following equation based on 40 CFR Part 98, Subpart Q, Equation Q-8 and 40 CFR §98.173(b)(2)(iii):

SSER
$$\left(\frac{\text{metric ton}}{\text{hr}}\right) = 5.18 \times 10^{-7} \times \text{STC}$$
 (%, dry basis) x Q $\left(\frac{\text{scf}}{\text{hr}}\right) \times \frac{100 - \text{MC}$ (%)}{100}

Where,

SSER = Site-specific CO₂ emission rate

 $STC = Concentration of CO_2$ measured during the stack test

Q = Hourly stack gas volumetric flow rate measured during the stack test

MC = Moisture content measured during the stack test

The CO₂ emission factor is developed from the CO₂ emission rate and the hourly steel production rate at the time of the stack tests:

Emission Factor
$$\left(\frac{\text{metric ton}}{\text{metric ton}}\right) = \text{SSER}\left(\frac{\text{metric ton}}{\text{hr}}\right) \times \frac{1}{\text{Hourly Steel Production}}\left(\frac{\text{hr}}{\text{metric ton}}\right)$$

Where,

SSER = Site-specific CO₂ emission rate

The maximum emission factor is then selected to account for possible variations in the carbon source at the proposed Project and its potential impact on emissions. Annual CO₂e emissions from the meltshop baghouse are calculated using the following equation:

Annual Emissions (tpy) = Emission Factor $\left(\frac{\text{metric ton}}{\text{metric ton}}\right) \times \text{Annual Steel Production } \left(\frac{\text{ton}}{\text{yr}}\right) \times \text{CO}_2 \text{ GWP}$

Uncaptured emissions from the EAF and LMS are calculated using the methodology noted above.

16.1.4 HAP Emissions

Emissions of HAPs are based on emission factors and the anticipated steel production rate at the Facility. Emission factors for the EAF and LMS captured HAP emissions are based on process experience from other CMC micro mills. Emission factors for the EAF and LMS uncaptured emissions are calculated are using the methodology noted above.

Hourly and annual emissions of HAPs from the EAF and LMS for captured and uncaptured emissions are calculated using the following equations:

Hourly Emissions
$$\left(\frac{lb}{hr}\right) = Emission Factor \left(\frac{lb}{ton}\right) x$$
 Hourly Steel Production $\left(\frac{ton}{hr}\right)$
Annual Emissions $\left(\frac{ton}{yr}\right) = Emission Factor \left(\frac{lb}{ton}\right) x$ Annual Steel Production $\left(\frac{ton}{yr}\right) x \frac{1}{2,000} \left(\frac{ton}{lb}\right)$

16.2 Rolling Mill, Cooling Beds, & Spooler Vents

The proposed micro mill's rolling mill, cooling beds, and spooler will each have an associated building roof vent (i.e., the rolling mill vent, cooling bed vent, and spooler vent). The rolling mill has the potential to emit PM, PM₁₀, PM_{2.5}, and VOC via the rolling mill vent. The cooling beds and spooler have the potential to emit PM, PM₁₀, PM_{2.5}, and VOC via the cooling beds and spooler vents. Emissions from these vents are expected to be negligible; as such, de minimis values are assumed as a conservative representation of the hourly and annual emission rates from the vents. Emissions from the bit furnaces are also vented from the rolling mill vents and are therefore also included in the rolling mill vent emissions.

16.3 Silos

The proposed silos have the potential to emit PM, PM₁₀, and PM_{2.5}. Emissions from the silos are each controlled by their own bin vent (the bin vents are primarily used for material recovery purposes). Emissions from the silos, via the bin vents, only occur when the silos are being loaded, which occurs at the base of the silo during truck deliveries (fluxing agent and carbon silos) and during the transfer of dust from the baghouse (baghouse dust silo). Loading the silo at the base forces air through the top of the silo through the bin vent and into the atmosphere. During the unloading of the silos, air is pulled into the silo through the bin vent. During the unloading of the baghouse dust from the silo, any resulting exhaust is routed back to the silo and the associated fabric filter.

Emissions of PM, PM₁₀, and PM_{2.5} are calculated based on the fabric filter or baghouse outlet grain loading and the anticipated air flow rates. The grain loadings proposed as BACT are used to calculate emissions and are discussed in more detail in Section 23 of this application. Annual emission calculations are conservatively calculated using a reasonable upper bound for all silos other than the EAF Baghouse Dust silo, and 8,760 annual operating hours for the baghouse dust silo. The following equations are used to calculate hourly and annual PM, PM₁₀, and PM_{2.5} emissions:

Hourly Emissions
$$\left(\frac{lb}{hr}\right) = Emission Factor \left(\frac{gr}{dscf}\right) \times Flow Rate \left(\frac{dscf}{min}\right) \times \frac{1}{7,000} \left(\frac{lb}{gr}\right) \times 60 \left(\frac{min}{hr}\right)$$

Annual Emissions $\left(\frac{\text{ton}}{\text{yr}}\right)$ = Hourly Emissions $\left(\frac{\text{lb}}{\text{hr}}\right)$ x Annual Operating Hours $\left(\frac{\text{hr}}{\text{yr}}\right)$ x $\frac{1}{2,000}\left(\frac{\text{ton}}{\text{lb}}\right)$

16.4 Caster Teeming

Caster teeming operations have the potential to emit PM, PM₁₀, PM_{2.5}, and VOC. Emissions from caster teeming will be routed to the caster vent. Emissions are determined from emission factors and proposed micro mill and Facility's respective maximum steel production rates.

No emission factors are available for teeming associated with continuous casting so 10% of the factor for PM emissions from conventional ingot teeming of unleaded steel (uncontrolled) from AP-42 Section 12.5, Table 12.5-1, January 1995 and 10% of the factor for VOC emissions from conventional ingot teeming of unleaded steel (SCC 3-03-009) from the Point Sources Committee's *Emission Inventory Improvement Program: Uncontrolled Emission Factor Listing for Criteria Air Pollutants*, July 2001 are used. The 10% assumptions are used because (1) the transfer of steel from ladles to the tundish to the mold for continuous casting is more enclosed than the transfer for conventional ingot casting and (2) the continuous caster mold is water-cooled while conventional molds are not. The emission factors for PM₁₀ and PM_{2.5} are conservatively assumed to be equal to the emission factor for PM.

The following equations are used to calculate hourly and annual PM, PM₁₀, PM_{2.5}, and VOC emissions from caster teeming emitted through each of the caster vent:

Hourly Emissions
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor $\left(\frac{lb}{ton}\right)$ x Hourly Steel Production $\left(\frac{ton}{hr}\right)$
Annual Emissions $\left(\frac{ton}{yr}\right)$ = Emission Factor $\left(\frac{lb}{ton}\right)$ x Annual Steel Production $\left(\frac{ton}{yr}\right)$ x $\frac{1}{2,000}\left(\frac{ton}{lb}\right)$

16.5 Cooling Towers

The proposed cooling towers (two non-contact and one contact) have the potential to emit PM, PM_{10} , and $PM_{2.5}$. Each of the three cooling towers will be equipped with two individual cells. Some of the liquid will become entrained in the air stream and will be carried out of the towers as drift droplets. These droplets will contain dissolved solids that contribute to potential particulate emissions. Potential emissions from the proposed replacement cooling towers are based on the anticipated maximum cooling water flow rate, the anticipated maximum Total Dissolved Solids (TDS) content, and the drift loss percentage. The drift loss

percentage proposed as BACT is used in the emission calculations. The drift loss percentage proposed as BACT is discussed in more detail in Section 23 of this application. All potential PM, PM₁₀, and PM_{2.5} emissions from the cooling towers are determined using the Reisman and Frisbie method.¹⁰ Annual emissions are based on 8,760 hours of normal operation for the cooling tower.

16.6 Fuel Combustion

The sources of fuel combustion emissions will be as follows. These combustion sources will vent emissions inside the buildings.

- Three ladle preheaters;
- Two ladle dryers;
- Two tundish preheaters;
- One tundish dryer;
- One tundish mandril dryer;
- One shroud heater;
- Twenty Melt Shop comfort heaters;
- Twenty Rolling Mill comfort heaters;
- One bit furnace; and
- Cutting Torches.

The combustion sources will utilize propane fuel or natural gas. The proposed sources of propane and natural gas combustion have the potential to emit criteria pollutants, GHGs, and HAPs.

16.6.1 Criteria Pollutant Emissions

Emissions of PM, PM₁₀, PM_{2.5}, NO_x, CO, VOC, and SO₂ from each combustion emission source type are calculated based on the anticipated total heat input rating, the annual utilization percentage, and emission factors. Emission factors for PM, PM₁₀, PM_{2.5}, NO_x, CO, VOC, SO₂, and lead are based on the proposed BACT as described in Section 23 of this application and are generally equivalent to the factors in AP-42 Section 1.5, dated July 2008 for propane combustion or AP-42 Section 1.4, dated July 1998 for natural gas combustion. All emission factors are converted to a lb/MMBtu basis and the maximum factor from propane or natural ga combustion is used to complete the calculations.

Hourly and annual emissions are calculated using the following two equations, respectively:

Hourly Emissions
$$\left(\frac{lb}{hr}\right)$$
 = Maximum EF $\left(\frac{lb}{MMBtu}\right)$ x Hourly THIR $\left(\frac{MMBtu}{hr}\right)$
Annual Emissions $\left(\frac{ton}{yr}\right)$
= Maximum EF $\left(\frac{lb}{MMBtu}\right)$ x Hourly THIR $\left(\frac{MMBtu}{hr}\right)$ x 8,760 $\left(\frac{hr}{yr}\right)$ x $\frac{AU(\%)}{100}$ x $\frac{1}{2,000}$ $\left(\frac{ton}{lb}\right)$

¹⁰ Per Calculating Realistic PM₁₀ Emissions from Cooling Towers. Joel Reisman and Gordon Frisbie, 2003.

Maximum EF = Maximum emission factor between propane and natural gas THIR = Total heat input rate AU = Annual utilization

16.6.2 GHG Emissions

Emissions of the GHGs CO₂, CH₄, and N₂O are calculated from the anticipated total heat rating for each combustion source type and emission factors. The emission factors for CO₂ are obtained from 40 CFR Part 98, Table C–1 to Subpart C, December 2016, for natural gas and propane. Emission factors for CH₄ and N₂O are obtained from 40 CFR Part 98, Table C–2 to Subpart C, December 2016, for natural gas and propane. The following equation is used to calculate annual GHG specie emissions:

Annual Emissions
$$\left(\frac{\text{ton}}{\text{yr}}\right)$$

= Maximum EF $\left(\frac{\text{lb}}{\text{MMBtu}}\right)$ x Hourly THIR $\left(\frac{\text{MMBtu}}{\text{hr}}\right)$ x 8,760 $\left(\frac{\text{hr}}{\text{yr}}\right)$ x $\frac{\text{AU}(\%)}{100}$ x $\frac{1}{2,000}\left(\frac{\text{ton}}{\text{lb}}\right)$

Where,

Maximum EF = Maximum emission factor between propane and natural gas THIR = Total heat input rate AU = Annual utilization

The emissions of CO₂, CH₄, and N₂O along with each respective global warming potential are used to calculate the emissions of CO₂e. The global warming potentials for the GHGs are obtained from 40 CFR Part 98, Table A-1, December 2014. The following equation is used to calculate annual CO₂e emissions:

Annual Emissions
$$\left(\frac{\text{ton}}{\text{yr}}\right) = \sum_{i} \left[\text{GWP}_{i} \times \text{Annual Emissions}_{i} \left(\frac{\text{ton}}{\text{yr}}\right)\right]$$

Where,

 $GWP = Global warming potential i = CO_2, CH_4, N_2O$

16.6.3 HAP Emissions

No HAP emissions are contained in AP-42 for propane combustion. Therefore, emissions of HAPs are calculated from the anticipated total heat input rating, the annual utilization, and natural gas combustion emission factors. Natural gas combustion HAP emission factors are from AP-42 Section 1.4, Tables 1.4-3 and 1.4-4, July 1998. The following two equations are used to calculate the hourly and annual HAP emissions from natural gas combustion sources:

Hourly Emissions
$$\left(\frac{lb}{hr}\right) = EF\left(\frac{lb}{MMscf}\right) \times Hourly THIR\left(\frac{MMBtu}{hr}\right) \times \frac{1}{1,020}\left(\frac{scf}{Btu}\right)$$

AE $\left(\frac{ton}{yr}\right) = EF\left(\frac{lb}{MMscf}\right) \times Hourly THIR\left(\frac{MMBtu}{hr}\right) \times 8,760\left(\frac{hr}{yr}\right) \times \frac{AU\left(\frac{6}{3}\right)}{100} \times \frac{1}{1,020}\left(\frac{scf}{Btu}\right) \times \frac{1}{2,000}\left(\frac{ton}{lb}\right)$

EF = Emission Factor THIR = Total heat input rate AE = Annual Emissions

16.7 Binder Usage

The proposed usage of binder for tundish and ladle refractory repair and replacement has the potential to emit PM, PM_{10} , $PM_{2.5}$, CO, and VOC. Emissions from the binder usage will enter the atmosphere through the caster vent. Emissions are calculated using emission factors and the proposed rate of binder usage.

The binder usage emission factors for PM, PM₁₀, PM_{2.5}, and CO emissions are based on process experience from other CMC micro mills. The binder usage emission factors for VOC emissions are based on an estimated percent of binder resin pyrolyzed/oxidized. The percent of binder resin pyrolyzed/oxidized is estimated based on process experience from other CMC micro-mills. The following equations are used to calculate hourly and annual emissions from binder usage, respectively:

Hourly Emissions $\left(\frac{lb}{hr}\right)$ = Emission Factor $\left(\frac{lb}{lb}\right)$ x Hourly Binder Usage $\left(\frac{lb}{hr}\right)$

Annual Emissions $\left(\frac{ton}{yr}\right)$ = Emission Factor $\left(\frac{lb}{lb}\right)$ x Annual Binder Usage $\left(\frac{ton}{yr}\right)$

16.8 Material Transfers

Emissions from material transfers are expected to occur when transferring the following types of materials:

- Scrap;
- Fluxing agent;
- Alloy aggregate;
- Spent refractory/other waste;
- Slag;
- Residual scrap¹¹; and
- Mill scale.

The proposed material transfers have the potential to emit PM, PM₁₀, and PM_{2.5}. Emissions of PM, PM₁₀, and PM_{2.5} from material transfers are calculated based on emission factors, the maximum throughput of material, the fine content of the material, and control efficiencies from partial enclosures, if applicable. Emission factors for PM, PM₁₀, and PM_{2.5} from material transfers (i.e., drop points) are calculated based on the material's moisture content, the mean wind speed, and a particle size multiplier and by using the following equation from AP-42 Section 13.2.4, November 2006:

¹¹ Residual scrap is loose scrap at the bottom of scrap piles or scrap trucks (also known as "truck sweeps") that has been commingled with other materials (such as dirt).

Emission Factor
$$\left(\frac{lb}{ton}\right) = \frac{FC(\%)}{100} x k x 0.0032 x \frac{\left[\frac{U(mph)}{5}\right]^{1.3}}{\left[\frac{M(\%)}{2}\right]^{1.4}} x \left(1 - \frac{CE(\%)}{100}\right)$$

k = Particle size multiplier
U = Mean wind speed
M = Material moisture content
FC = Fine content of material
CE = Control efficiency from partial enclosure (if applicable)

A proposed screening operation will be used as a part of the material handling of slag. Emission factors for the controlled triple deck screening operation are obtained from AP-42 Section 11.19.2, Table 11.19.2-2, August 2004.

The PM, PM₁₀, and PM_{2.5} emissions from material transfers, including intermingled slag screening operations, are calculated by using the following equations:

Hourly Emissions $\left(\frac{lb}{hr}\right) = EF\left(\frac{lb}{ton}\right) x$ Hourly MT $\left(\frac{ton}{hr}\right) x$

Annual Emissions $\left(\frac{\text{ton}}{\text{yr}}\right) = \text{EF}\left(\frac{\text{lb}}{\text{ton}}\right) \text{ x Annual MT } \left(\frac{\text{ton}}{\text{yr}}\right) \text{ x } \frac{1}{2,000} \left(\frac{\text{ton}}{\text{lb}}\right)$

Where,

EF = Emission Factor MT = Maximum throughput rate of material

16.9 Ball Drop Crushing

The ball drop crushing of large scrap (also known as "reclaim" or "skulls", from the process) has the potential to emit PM, PM₁₀, and PM_{2.5}. Emissions of PM, PM₁₀, and PM_{2.5} from the ball drop crushing of large scrap are calculated based on emission factors and the maximum throughput rates of large scrap. Emission factors for the crushing operation are obtained from AP-42 Section 11.19.2, Table 11.19.2-2, August 2004. The emission factors listed for controlled tertiary crushing are conservatively used to represent emissions from the ball drop crushing of large scrap are large scrap are calculated using the following equations:

Hourly Emissions
$$\left(\frac{lb}{hr}\right) = Emission Factor \left(\frac{lb}{ton}\right) \times Hourly MT \left(\frac{ton}{hr}\right)$$

Annual Emissions $\left(\frac{ton}{yr}\right) = Emission Factor \left(\frac{lb}{ton}\right) \times Annual MT \left(\frac{ton}{hr}\right) \times \frac{1}{2,000} \left(\frac{ton}{lb}\right)$

Where,

MT = Maximum Throughput Rate of Material Storage Piles

16.10 Storage Piles

Emissions from storage piles are expected to occur from the storage of the following types of materials:

- Scrap;
- Alloy aggregate;
- Slag;
- Residual scrap; and
- Mill scale.

The proposed storage piles have the potential to emit PM, PM₁₀, and PM_{2.5}. Emissions of PM, PM₁₀, and PM_{2.5} from storage piles are calculated based on the anticipated maximum pile area and an emission factor. PM emission factors for storage pile emissions are based on the following equation from the *Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures*, EPA-450/2-92-004, September 1992:

Emission Factor
$$\left(\frac{lb}{day}{acre}\right) = 1.7 \times \frac{s(\%)}{1.5} \times \frac{365 - P(days)}{235} \times \frac{f(\%)}{15} \times (1 - \frac{CE(\%)}{100})$$

Where,

- s = Silt content
- P = Days per year with at least 0.01 inches of precipitation, based on AP-42 Section 13.2, Figure 13.2.2-1, November 2006
- f = Percentage of time the unobstructed wind speed exceeds 12 miles per meteorological data collected at Martinsburg Eastern West Virginia (KMRB) Airport station for period between 2017 to 2021
- CE = Control efficiency from partial enclosure (if applicable)

Per the Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, EPA-450/2-92-004, September 1992, the following ratio is used to convert the PM emission factors to PM_{10} emission factors:

 $\text{Emission Factor}_{\text{PM}_{10}}\left(\frac{\frac{\text{lb}}{\text{day}}}{\text{acre}}\right) = 0.5 \text{ x Emission Factor}_{\text{PM}}\left(\frac{\frac{\text{lb}}{\text{day}}}{\text{acre}}\right)$

Per AP-42 Section 13.2.4, November 2006, the following ratio is used to convert PM emission factors to PM_{2.5} emission factors:

$$\text{Emission Factor}_{\text{PM}_{2.5}} \left(\frac{\text{lb}}{\text{day}} \\ \text{acre} \right) = 0.053 \text{ x Emission Factor}_{\text{PM}} \left(\frac{\text{lb}}{\text{day}} \\ \text{acre} \right)$$

The following equations are used to calculate hourly and annual PM, PM₁₀, and PM_{2.5} emissions from storage piles:

Hourly Emissions
$$\left(\frac{lb}{hr}\right) = EF\left(\frac{\frac{lb}{day}}{acre}\right) x MPA (ft^2) x \frac{1}{43,560} \left(\frac{acre}{ft^2}\right) x \frac{1}{24} \left(\frac{day}{hr}\right)$$

Annual Emissions $\left(\frac{ton}{yr}\right) = EF\left(\frac{\frac{lb}{day}}{acre}\right) x MPA (ft^2) x \frac{1}{43,560} \left(\frac{acre}{ft^2}\right) x 365 \left(\frac{day}{yr}\right) x \frac{1}{2,000} \left(\frac{ton}{lb}\right)$

EF = Emission factor MPA = Maximum pile area

16.11 Roads

Emissions of PM, PM₁₀, and PM_{2.5} are generated from vehicular traffic on roads. Road emissions are calculated based on vehicle miles travelled (VMT), emission factors, and control efficiencies. The vehicular VMT is calculated by multiplying number of trips and round-trip distance. The number of trips was estimated based on process knowledge or material throughput with vehicle capacity. Additional details on the road segments utilized in developing the road emissions estimates are contained in Appendix C.

16.11.1 Emissions from Unpaved Roads

Uncontrolled PM, PM₁₀, and PM_{2.5} emission factors for vehicles traveling on unpaved roads are calculated using the following equations from AP-42, Section 13.2.2 (November 2006):

$$\mathbf{E} = (\mathbf{k}) \left(\frac{\mathbf{s}}{12}\right)^{\mathbf{a}} \left(\frac{\mathbf{W}}{3}\right)^{\mathbf{b}}$$

 $E_{ext} = E[(365 - P)/365]$

Where,

E = size-specific hourly emission factor (lb/VMT)

E_{ext} = size-specific annual emission factor (lb/VMT)

k = particle size multiplier, per AP-42 Table 13.2.2-2 (November 2006)

s = surface material silt content (%), 6% as accepted by MCAQD and EPA Region 9 for the PSD permit actions at the CMC operations in Arizona, which are substantially similar to the proposed project.

W = mean vehicle weight (tons)

a, b = constant, per AP-42 Table 13.2.2-2 (November 2006)

P = days per year with at least 0.01 inch precipitation, per AP-42 Figure 13.2.2-1, November 2006

The following equations are used to calculate hourly and annual emissions from vehicle traffic on unpaved roads:

Hourly Emissions
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor $\left(\frac{lb}{VMT}\right)$ x Hourly Vehicle Miles $\left(\frac{VMT}{hr}\right)$

Annual Emissions
$$\left(\frac{\text{ton}}{\text{yr}}\right)$$
 = Emission Factor $\left(\frac{\text{lb}}{\text{VMT}}\right)$ x Annual Vehicle Miles $\left(\frac{\text{VMT}}{\text{yr}}\right)$ x $\frac{1}{2,000}\left(\frac{\text{ton}}{\text{lb}}\right)$

Unpaved roads associated with the slag quench operations will be watered only as all other emission reduction techniques are infeasible. These unpaved roads are subject to watering based on the results of the top-down BACT. Per Table 6 of Preliminary Determination/Fact Sheet for the Construction of Nucor Steel West Virginia LLC, dated March 29, 2022, watering is expected to provide a 90% control efficiency. Unpaved roads not associated with the slag quench operations will deploy work practices (e.g., watering, etc.) consistent with the BACT proposal in Section 23 of this application. These unpaved roads are subject to a 95% control efficiency per U.S. EPA AP-42 Section 13.2.2, November 2006.

16.11.2 Emissions from Paved Roads

PM, PM₁₀, and PM_{2.5} emission factors for vehicles traveling on paved roads are calculated using the following equations from AP-42, Section 13.2.1 (January 2011):

 $E = k(sL)^{0.91} \times (W)^{1.02}$

 $E_{ext} = [k(sL)^{0.91} \times (W)^{1.02}](1 - P/4N)$

Where,

- E = size-specific hourly emission factor (lb/VMT)
- E_{ext} = size-specific annual emission factor (lb/VMT)
- k = constant for equation, 0.011 for PM, 0.0022 for PM₁₀, 0.00054 for PM_{2.5}, per AP-42 Table 13.2.1-1 (January 2011)
- sL = road surface silt loading (g/m²), 3.34 g/m² as accepted by MCAQD and EPA Region 9 for the PSD permit actions at the CMC operations in Arizona, which are substantially similar to the proposed project.
- W = mean vehicle weight (tons)
- P = days per year with at least 0.01 inches of precipitation, per AP-42 Figure 13.2.1-2, January 2011

N = number of days in the averaging period, 365 for annual averaging period

Control efficiency of 90% is applied to account for control measures to be implemented on the paved roads, consistent with the work practices proposed as BACT in Section 23 of this application.

16.12 Diesel Combustion

The proposed Tier 3 diesel combustion emergency generator and emergency fire water pump have the potential to emit criteria pollutants, GHGs, and HAPs. Emissions from these emergency units will enter the atmosphere via the unit's stack.

16.12.1 Criteria Pollutant Emissions

Emissions of PM, PM₁₀, PM_{2.5}, NO_x, CO, and VOC, and SO₂ are calculated based on the unit's rating, hours of operation (which are 100 hours/year and inclusive of testing and maintenance consistent with the requirements of 40 CFR Part 60, Subpart IIII), and emission factors.

The emission factors for emissions of PM, PM₁₀, PM_{2.5}, NO_x, CO, and VOC are based on the requirements of 40 CFR Part 60, Subpart IIII, referencing 40 CFR Part 1039, Appendix I with the emission factors of VOC and NO_x speciated based Table 6 of the EPA publication "*Exhaust and Crankcase Emission Factors*"

for Nonroad Engine Modeling – Compression Ignition", EPA420-P-02-016. The emission factor for SO₂ is based on the utilization of ultra-low sulfur diesel (ULSD) which contains no more than 15 ppmv sulfur. The sulfur content of diesel is converted to an emission factor using an average brake specific fuel consumption of 7,000 Btu/hp-hr, and the diesel heating value of 19,300 Btu/lb.

Hourly and annual emissions of PM, PM_{10} , $PM_{2.5}$, NO_X , CO, VOC, and SO_2 from the diesel combustion are calculated using the following two equations, respectively:

Hourly Emissions $\left(\frac{lb}{hr}\right) = EF\left(\frac{g}{hp - hr}\right) \times \chi(hp) \times \left(\frac{lb}{453.6 \text{ g}}\right)$ Annual Emissions $\left(\frac{ton}{yr}\right) =$ Hourly Emissions $\left(\frac{lb}{hr}\right) \times 100 \left(\frac{hr}{yr}\right) \times \left(\frac{ton}{2,000 \text{ lb}}\right)$

Where,

EF = Emission factor

16.12.2 GHG Emissions

Emissions of the GHGs CO₂, CH₄, and N₂O are calculated from the unit's rating and emission factors. The emission factors for CO₂ are obtained from 40 CFR Part 98, Table C–1 to Subpart C, December 2016, for distillate fuel oil No. 2. Emission factors for CH₄ and N₂O are obtained from 40 CFR Part 98, Table C–2 to Subpart C, December 2016, for natural gas. The following equation is used to calculate annual GHG specie emissions:

Annual Emissions
$$\left(\frac{\text{ton}}{\text{yr}}\right)$$

= EF $\left(\frac{\text{kg}}{\text{MMBtu}}\right) \times \left(\frac{7,000 \text{ Btu}}{10^6 \text{hp} - \text{hr}}\right) \times 1.341 \left(\frac{\text{hp}}{\text{kW}}\right) \times \left(\frac{1,000 \text{ g}}{\text{kg}}\right) \times (\text{hp}) \times \left(\frac{\text{lb}}{453.6 \text{ g}}\right) \times 100 \left(\frac{\text{hr}}{\text{yr}}\right) \times \left(\frac{\text{ton}}{2,000 \text{ lb}}\right)$

Where,

EF = Emission factor

The emissions of CO₂, CH₄, and N₂O along with each respective global warming potential are used to calculate the emissions of CO₂e. The global warming potentials for the GHGs are obtained from 40 CFR Part 98, Table A-1, December 2014. The following equation is used to calculate annual CO₂e emissions:

Annual Emissions
$$\left(\frac{\text{ton}}{\text{yr}}\right) = \sum_{i} \left[\text{GWP}_{i} \times \text{Annual Emissions}_{i} \left(\frac{\text{ton}}{\text{yr}}\right)\right]$$

Where,

 $\label{eq:GWP} \begin{aligned} & \mathsf{GWP} = \mathsf{Global} \text{ warming potential} \\ & \mathsf{i} = \mathsf{CO}_2, \, \mathsf{CH}_4, \, \mathsf{N}_2\mathsf{O} \end{aligned}$

16.12.3 HAP Emissions

Emissions of HAPs are calculated from the unit's rating and emission factors. HAP emission factors are from AP-42 Section 3.3, Table 3.3-2. The following two equations are used to calculate the hourly and annual HAP emissions from diesel combustion:

Hourly Emissions $\left(\frac{lb}{hr}\right) = EF\left(\frac{lb}{MMBtu}\right) \times \left(\frac{7,000 \text{ Btu}}{10^6\text{hp} - \text{hr}}\right) \times (\text{hp})$

Annual Emissions $\left(\frac{ton}{yr}\right)$ = Hourly Emissions $\left(\frac{lb}{hr}\right) \ge 100 \left(\frac{hr}{yr}\right) \ge \left(\frac{ton}{2,000 \text{ lb}}\right)$

Where,

EF = Emission Factor

16.13 Torch Cutting

Emissions of PM, PM₁₀, and PM_{2.5} from the cutting torches are estimated based on the amount of scrap to be cut, the scrap removal rate per cut (approximately 1 inch of material per cut), the maximum cutting rate (approximately 0.4 cuts/ft of material to be cut), maximum daily operation, and emission factor. The emission factor of 0.00016 lb/inch cut is for oxyacetylene cutting per the American Welding Society (AWS).¹² It is assumed that the emission rate from propane or natural gas cutting is similar to that of oxyacetylene cutting.¹³

16.14 Storage Tanks

Emissions of VOC from the diesel storage tanks located at the Facility were estimated using the equations for horizontal and vertical fixed roof storage tanks located in AP-42 Section 7.1, dated June 2020.

16.15 De Minimis Sources

Pursuant to 45 CSR 13-2.2.6

"De minimis source" means any emissions unit listed in Table 45-13B below, whether individual or a part of a common plan (i.e., a common set of new sources or physical changes in or changes in the method of operation of any existing stationary source). A "de minimis source" is deemed to have insignificant emissions and/or is not usually a source of quantifiable emissions which can be practically regulated in determining potential to emit or actual emissions for the purpose of determining whether a permit is required under this rule. Emissions to the extent quantifiable from emissions units listed in Table 45-13B do not need to be added together by the source unless otherwise required by the Secretary.

No emission calculations were performed for the following list of proposed equipment types because each is considered a De minimis source.

- Air compressors and pneumatically-operated equipment, including hand tools; instrument air systems (excluding fuel-fired compressors); emissions from pneumatic starters on reciprocating engines, turbines or other equipment; and periodic use of air for cleanup (excluding all sandblasting activities).
- Bench-scale laboratory equipment used for physical or chemical analysis, excluding lab fume hoods or vents.

¹² Pursuant to "EUG 2 Torch Cutting's Parameters" in the Okhahoma Department of Environmental Quality Evaluation of Permit Application No. 2021-0086-O for CMC Recycling Tulsa Recycling Plant, dated March 10, 2022.

¹³ Ibid.

- Portable brazing, soldering, gas cutting or welding equipment used as an auxiliary to the principal equipment at the source.
- Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.
- Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.

17. ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

Attachment D: Regulatory Discussion provides details on the state and federal regulatory applicability analysis as well as all proposed monitoring/recordkeeping/reporting/testing plan.

18. ATTACHMENT P: PUBLIC NOTICE

Attached is the public notice and affidavit of publication for the proposed permitting action.

Column AFFIDAVIT OF PUBLICATION

Journal (Martinsburg) 207 W. King St (304) 263-8931

I, Carol Bush, of lawful age, being duly sworn upon oath, deposes and says that I am the Notary Public of Journal (Martinsburg), a publication that is a "legal newspaper" as that phrase is defined for the city of Martinsburg, for the County of Berkeley, in the state of West Virginia, that this affidavit is Page 1 of 2 with the full text of the sworn-to notice set forth on the pages that follow, and that the attachment hereto contains the correct copy of what was published in said legal newspaper in consecutive issues on the following dates:

PUBLICATION DATES: 5 Jan 2023

Notice ID: O0WbigHkRvXPr9X8PCxy Notice Name: CMC Kent Public Notice

PUBLICATION FEE: \$113.32

VERIFICATION STATE OF WEST VIRGINIA COUNTY OF BERKELEY

Signed or attested before me on this

16 day of January, A.D. 20-23. OFFICIAL SEAL NOTARY PUBLIC STATE OF WEST VIRGINIA Carol Bush Carol Bush Wy Commission Expires April 29, 2023

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that CMC Steel US, LLC has applied to the West Virginia Department of Environmental

Protection, Division of Air Quality, for a new Prevention of Significant Deterioration (PSD) Construction

Permit for a steel micro mill to be located off Dupont Road near Martinsburg, Berkeley County, West

Virginia. The site latitude and longitude coordinates are; 39.538133 °N, -77.888409°W.

CMC is proposing to construct a new micro mill and associated support operations. Specifically, the

proposed project will include the installation of a meltshop (including an Electric Arc Furnace and Ladie

Metallurgy Station}, casting operations, heaters and dryers, rolling mill, and finishing operations. The project

also involves installation of a slag processing plant, and ancillary equipment related to the production

process.

The applicant estimates the potential to discharge the following Regulated Air Pollutants associated with

the project after the installation of the proposed equipment:

Pollutant

Emissions in tpy

(tons per year)

NOX 99

> CO 1,309

VOČ 98

SO2 98

Filterable PM

Total PM*1 188

Total PM10 179

Total PM2.5 174

Total HAPs 2.33

Carbon Dioxide Equivalents (CO2e) 120,600

*1 Total PM includes filterable and condensable PM fractions. Start of protect will begin in June 2023, Anticipated start-up is December 2025. Written comments will be

received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th

i i

Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Written comments will also be received via email at DEPAirQualityPermitting@VW.gov. Any questions

regarding this permit application should be directed to the DAQ at (304) 926-0499 extension 41281 during normal business hours.

Dated this the 3rd day of January, 2023.

By: CMC Steel US, LLC

Billy Milligan

Vice President, Sustainability and Government Affairs

6565 North MacArthur Blvd.

Suite 800

Irving, TX 75039

19. ATTACHMENT Q: BUSINESS CONFIDENTIAL CLAIMS (NOT APPLICABLE)

20. ATTACHMENT R: AUTHORITY FORMS (NOT APPLICABLE)

21. ATTACHMENT S: TITLE V PERMIT REVISION INFORMATION (NOT APPLICABLE)

Pursuant to the requirements of 45CSR22 Section 3.4, CMC will submitting an initial permit application fee of \$14,500 based on the following:

- ► Base application fee = \$1,000
- NSPS applicability fee = \$1,000
- NESHAP applicability fee = \$2,500
- PSD permit application fee = \$10,000

23. BEST AVAILABLE CONTROL TECHNOLOGY (BACT)

The requirement to use the best available control technology (BACT) applies to each new or modified emission unit from which there are emissions increases of pollutants subject to PSD review. The proposed Project is subject to PSD review for NO_X, CO, SO₂, PM, PM₁₀, PM_{2.5}, Fluorides excluding Hydrogen Fluoride (HF), VOC, and GHG measured as CO₂e, and is therefore subject to BACT for these pollutants. The estimated site-wide lead (Pb) emissions are below the PSD significant emission rate (SER) and as such, Pb is not subject to PSD and not included in this BACT analysis. Because this is a proposed Project, all project emission units are considered new for purposes of the BACT review. The top-down BACT analysis is presented in tabular format for each emission unit and respective pollutant.

23.1 PSD BACT Top-Down Approach

The following sections contain a description of the five (5) basic steps of U.S. EPA's preferred "top-down" approach for selecting BACT.

23.1.1 Step 1 – Identify Air Pollution Control Technologies

Available control technologies with the practical potential for application to the emission unit and regulated air pollutant in question are identified. The selected control technologies vary widely depending on the process technology and pollutant being controlled. The application of demonstrated control technologies in other similar source categories to the emission unit in question may also be considered in this step.

23.1.2 Step 2 – Eliminate Technically Infeasible Options

"Technically infeasible" control options from the list of "potentially available" control options are eliminated. A control option is "technically feasible" if it has been "demonstrated" or if it is both "available" and "applicable."

23.1.3 Step 3 – Rank Remaining Control Technologies

All remaining technically feasible control options are ranked based on their overall control effectiveness for the pollutant under review. If there is only one remaining option or if all remaining technologies could achieve equivalent control efficiencies, ranking based on control efficiency is not required. Collateral effects are usually not considered until step four of the five step top-down BACT analysis.

23.1.4 Step 4 – Evaluate and Document Most Effective Controls

After identifying and ranking available and technically feasible control technologies, the economic, environmental, and energy impacts are evaluated to select the best control option. In the judgment of the permitting agency, if inappropriate economic, environmental, or energy impacts are associated with the top control option, the next most stringent option is evaluated. This process continues until a control technology is identified. This step validates the suitability of the top identified control option or provides a clear justification as to why the top option should not be selected as BACT.

23.1.5 Step 5 – Select BACT

The BACT emission limit is determined for each emission unit under review based on evaluations from the previous step.

Although the first four steps of the top-down BACT process involve technical and economic evaluations of potential control options (i.e., defining the appropriate technology), the selection of BACT in the fifth step involves an evaluation of emission rates achievable with the selected control technology.

The most effective control alternative not eliminated in Step 4 is selected with a corresponding emission limit as BACT. BACT is a numeric emissions limit (along with appropriate averaging times and a compliance determination method) unless technological or economic limitations of the measurement methodology would make the imposition of a numeric emissions standard infeasible, in which case a work practice or operating standard can be imposed. Selected BACT can be no less stringent than an applicable NSPS or NESHAP.

23.2 Steel Mill Types

Steel production has evolved over the last century, from integrated steel mills with production capacities in excess of 2,000,000 tons of steel per year to mini mills typically producing around 1,000,000 tons of steel per year. Integrated steel mills have slowly been phased out as start-up costs are prohibitive when compared with a mini mill. A mini mill relies solely on the EAF to melt recycled scrap metal and produce a variety of steel products (rebar, sheets, bars, plates, etc.). There are roughly less than 100 mini mills within the United States. These mini mills are the largest recyclers in the United States. The next generation of technology for steel production from recycled scrap is referred to as a "micro mill." This micro mill technology is being proposed for the Project.

23.2.1 Steel Micro Mills and Endless Charging System (ECS)

A micro mill is similar to a mini mill except smaller in size producing up to approximately 650,000 tons of steel per year. Micro mills use the heat in the waste gas from the EAF to preheat the scrap that is charged to the EAF which results in recovering some energy to offset the additional energy required to melt the scrap. Mini mills typically do not use such heat recovery. Techniques for scrap preheating have been applied world-wide, primarily in countries with high electricity costs, with varying success. The two types of scrap preheating techniques that have been applied in the United States are (1) the Fuchs shaft furnace, which is a batch type preheater, and (2) the ECS preheating system, which is a continuous charge feeding, preheating, and melting process. ECS is proposed for the Project. The Fuchs shaft furnace has been used on mini mills while the ECS has been used on both mini mills and micro mills in the United States.

For an EAF that uses a heat recovery process (i.e., Fuchs shaft furnace or ECS) and depending on the meltshop's overall operations, about two-thirds of the total additional energy requirement is electrical, and the balance is chemical energy from the oxidation of elements such as carbon, iron, and silicon and the combustion of propane/natural gas, typically using specially designed oxy-injectors. A little over 50% of the total energy leaves the furnace with the liquid steel, while the remainder is lost to the slag, waste gas, and cooling water. Approximately 20% of the total energy normally leaves the furnace via the waste gas. In an ECS process, this waste gas is used to preheat the scrap being charged to the EAF which results in recovering some of this otherwise wasted thermal energy, thus offsetting some of the electrical energy required to melt the scrap.

In the ECS process, the recycled scrap metal is loaded on a conveyor and passes through a dynamic seal into the preheating conveyor section. After moving through the preheating section, the scrap is discharged onto a connecting conveyor that enters the EAF and drops the scrap into the molten steel bath.¹⁴ Heat transferred to the scrap metal is provided by heat and chemical energy from the EAF exhaust gas. The

¹⁴ Per The State-of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook - Raw materials through Steelmaking, including recycling technologies, Common Systems, and General Energy Saving Measures. The Asia Pacific Partnership for Clean Development and Climate, December 2010.

EAF gases exit the furnace through the charge conveyor opening and travel through the preheater countercurrent to the scrap charge direction. The ECS provides many benefits including:

- Reduced energy consumption;
- Reduced electrode consumption;
- Reduced refractory consumption;
- Reduced noise and electrical disturbances; and
- ► Reduced maintenance.

CMC's proposed micro mill will utilize the ECS process which is considered a material part of the Project scope.

23.2.2 Scrap Metal Quality

Recycled scrap metal is the primary raw material used in the steel production process. The quality of the scrap metal used can impact the quality of the steel produced and associated air emissions. Steel mills producing long steel products such as rebar, T-Post, and rebar spools, are able to utilize scrap that mills producing flat steel products, such as flat-rolled steel or sheet metal, are not. Mills producing flat steel require scrap that has a higher density, and often incorporate higher-quality scrap along with other metallic raw materials such as hot-briquetted iron (HBI) and direct-reduced iron (DRI) to meet the required finished steel quality standards. These characteristics, in addition to being essential to flat steel production, typically result in lower levels of CO, SO₂, and VOC emissions from the EAF as compared to the production of long products. The proposed Project is a micro mill for long products (i.e., rebar) production.

A list of EAF and LMS facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

23.3 EAF and LMS Emissions Routed to Meltshop Baghouse

The proposed EAF (EAF1) and LMS (LMS1) will be routed to discharge from the meltshop baghouse (BH1). Any emissions from the EAF and LMS not captured by the baghouse will be vented to the caster vent. The BACT controls and emission limits are proposed for the combined EAF and LMS emissions that exhaust from the baghouse stack. The emission limits are provided as a 30-day rolling average as opposed to averages over a shorter time periods to account for process variabilities that may affect the emissions from the EAF and LMS as well as furnace delays where there may not be any active production but there will still be emissions during that time. Table 23-1 provides a summary of the selected BACT controls and emission limits for pollutants emitted by the EAF and LMS system through the meltshop baghouse.

Pollutant	Selected BACT Control	Selected BACT Limit (lb/ton, on a 30-day rolling average)		
со	Direct Evacuation Control (DEC)/Good Combustion Practices (GCP)	4		
NO _X	Direct Evacuation Control (DEC)/Oxy-Injectors	0.3		
SO ₂	Good Process Operation (Scrap Management Plan)	0.3		
PM/PM _{2.5} /PM ₁₀	Baghouse/Fabric Filter	0.0018 gr/dscf (PM Filterable) 0.0052 gr/dscf (total $PM_{10}/PM_{2.5}$ Filterable + Condensable)		
VOC	Good Process Control	0.3		
GHG as measured in CO ₂ e	Various Technologies and Work Practices	119,513 tons per year (tpy)		
Fluorides excluding Hydrogen Fluoride	Baghouse/Fabric Filter	0.01		

Table 23-1. Summary of Selected BACT for EAF/LMS

It should be noted that the U.S. EPA RBLC database contains separate BACT limits for the EAF and LMS at steel mills in the United States and other facilities may use natural gas combustion as a part of their LMS operations. In many cases, the exhaust from the EAF and LMS are combined into a single stream for the highest levels of emission reductions. As a result, it is unclear in some cases whether the limits presented in the RBLC apply to the EAF and LMS separately or to the combined exhaust stream. With this uncertainty, CMC has chosen to compare the proposed BACT limits for the combined EAF and LMS exhaust streams with the assumed EAF limits for facilities listed in the RBLC. This is a conservative approach as the individual EAF BACT limit is expected to be lower than the combined BACT limit for the EAF and LMS exhaust.

As discussed in Sections 23.2 and 23.3, many of the mills listed in the RBLC do not produce comparable products or may produce comparable products using a different raw material mix and melting process. Variability in raw material mix, raw material supplier, and melting processes will ultimately determine the amount of emissions emitted from the EAF and LMS. The following sections will provide a brief explanation behind the selected BACT limits.

23.3.1 CO BACT Limit

The proposed Project is not comparable to the recent Nucor West Virginia facility from a raw material, process, and product perspective. Furthermore, the Nucor West Virginia facility utilizes charge buckets to load the EAF which requires the roof of the EAF to open during the loading process. The excess oxygen during the charge bucket loading of the EAF would reduce any CO emissions significantly. The proposed Project utilizes the more energy efficient ECS technology which does not open the EAF roof to conserve and capture heat energy. This method of operation reduces the introduction of excess oxygen. Therefore, the CO emissions profile from the proposed Project is expected to be very different than that of the Nucor West Virginia facility.

Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar ECS technologies to the proposed Project. The 4 lb/ton emission limit from the CMC Mesa and CMC Durant facilities is more stringent than the 4.4 lb/ton emission limit from the Gerdau Ameristeel facility. Actual CEMs data from the CMC Mesa facility, a facility very similar to the proposed facility, demonstrates that a lower emission limit of 3.5 lb/ton of Nucor Frostproof and Nucor Sedalia facilities is not achievable in practice due to process and scrap variability.

23.3.2 NO_X BACT Limit

While only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies to the proposed EAF/LMS (i.e., ECS Process and Micro Mill), CMC has provided comparisons to other, recent, mini-mill NOx BACT limits as well. NOx generation in both miniand micro-mills is driven predominantly by thermal NOx, in which atmospheric nitrogen is oxidized at very high temperatures (in both mini- and micro-mills) to form NOx. CMC cautions that simply comparing the numerical value of the BACT limit among various mills is inappropriate because the overall stringency of the BACT limit depends not only on the numerical value but also the averaging time and the method of compliance, in addition to factors such as the product type, among others. An additional critical aspect is the form of the standard itself, expressed as lb/ton. Because mill operations often result in unanticipated delays (i.e., when the EAF's heat cycle is extended in order to address other shop-related problems such as downstream equipment including the LMS, caster, etc.), the NOx formation and generation at the EAF (i.e., the numerator in the lb/ton form of the standard) continues to increase with the delay but the production (i.e., the denominator) of steel does not, making the lb/ton ratio greater as the delay progresses. Even otherwise, NOx generation in steel production is highly variable within a single heat cycle given the highly stochastic nature of the underlying thermal NOx chemistry. Given these factors, most of which (i.e., NOx generation chemistry to a large extent and unexpected delays not just at the EAF but in the shop as a whole) are not under the control of the operator and given the form of the standard expressed as lb/ton, an averaging time of 30-days is appropriate for the proposed 0.3 numerical value of the standard. As the comparison to recent BACT determinations shows, this proposed NOx BACT limit, using a 30-day rolling average is appropriate. CMC notes that any downward deviations from the 0.3 Ib/ton values will likely necessitate extending the 30-day average to even longer time periods for the reasons noted.

23.3.3 SO₂ BACT Limit

The generation and emissions of SO₂ from the EAF/LMS are stoichiometric (i.e., depend on the totality of the sulfur inputs to the production process from all required inputs including scrap, limestone, and other additives). Because SO₂ generation and emissions are mainly driven by EAF inputs and chemistry, and because the inputs are inherently site-specific and depend on the availability of the various raw materials such as scrap (appropriate for the desired product-mix), limestone, carbon, etc., comparing numerical

limits established for other mills can result in inappropriate determinations for BACT. The proposed BACT limit of 0.3 lb/ton steel was developed via a reasonable balancing of site-specific inputs consistent with the product mix and availability of local inputs that are proposed for the Project along with a reasonable compliance margin.

23.3.4 PM BACT Limit

Filterable PM generation in an EAF (whether a micro- or mini-mill) is due to the complex and vigorous physical and chemical processes that occur during the charging, melting, and tapping of the EAF. This can be inherently variable (i.e., with no ability of the operator to control these processes) over time in a single heat. Regardless of the generation mechanisms, however, the filterable PM emissions depend largely on the air pollution control device, which, in the case of both mini- and micro-mills is universally a baghouse. The proposed Project will utilize a baghouse, therefore, CMC has summarized recent BACT determinations for both mini- and micro-mills. While the analysis shows that there is one lower determination of 0.0015 grains/dscf, CMC believes a BACT limit of 0.0018 grains/dscf is more appropriate considering a proper compliance margin as well as accounting for measurement aspects at these low levels.

In contrast to filterable PM, whose generation in the EAF is highly variable, condensable PM generation can vary even more because it can be created not just in the EAF (and survive the high-temperature environment of the EAF) but also in the exhaust gas path from the EAF to the baghouse and more, importantly, after the baghouse, as the gases cool and certain types of compounds such as sulfurcompounds and semi-volatile organics form via condensation. Due to the myriad formation mechanisms, condensable PM formation after the baghouse is inherently variable with little to no control of the operator other than managing proper scrap mix and additive injections. The proposed Project will use the best scrap guality consistent with its product mix. Based on these considerations, setting the BACT limit is largely a matter of determining the inherent variability of the condensable PM that is determined at the exist of the baghouse and using a reasonable compliance margin such that inherent, uncontrollable variability during a test (with its own set of measurement challenges) does not result in non-compliance that is no fault of the operator. The proposed BACT limit for total PM (i.e., 0.0052 grains/dscf, including both filterable and condensable components) is based on CMC's review of test data from baghouseequipped mini- and micro-mills in the US that have been reported by various operators and, specifically, the large variability observed in such tests, even on a run-to-run basis under close to identical EAF and test conditions.

23.3.5 VOC BACT Limit

The lowest VOC emission limit identified in the RBLC database for comparable facilities is 0.3 lb/ton and CMC proposes an emission limit of 0.3 lb VOC/ton for the combined EAF and LMS exhaust.

23.3.6 GHGs (CO2e) BACT Limit

GHG emissions, measured in CO₂e, are affected by the individual processes at every facility and are not comparable between different steel mills. Utilizing similar technologies and work practices other similar ECS facilities, CMC proposes an annual emission limit of 119,513 tpy for the combined EAF and LMS exhaust as reported to EPA pursuant to the requirements of 40 CFR Part 98.

23.3.7 Fluorides (excluding Hydrogen Fluoride) BACT Limit

Emissions of fluorides (excluding Hydrogen Fluoride) depend on additives used for fluidization and the maintenance of bath temperatures during tapping and refining, which depends on EAF design and product considerations. The lowest emission limit for fluorides (excluding hydrogen fluoride) in the RBLC database

for comparable ECS facilities is 0.01 lb/ton and CMC proposes an emission limit of 0.01 lb/ton for the combined EAF and LMS exhaust.

Table 23-2 to Table 23-8 top-down BACT analyses for each pollutant emitted from the meltshop baghouse.

Process	Pollutant
EAF/LMS	со

Step Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Oxygen Injection	Operating Practice Modification	Direct Evacuation Control (DEC)/ Good Combustion Practices (GCP)
Control Technology Description	· · · · · · · · · · · · · · · · · · ·	place at a faster rate and at a lower temperature than is possible with thermal oxidation. CO emissions can be controlled via catalytic oxidation. The oxidation is facilitated by the presence of the catalyst and carried out by the same basic chemical reaction as thermal oxidation:	a location where conditions for this reaction are	modifications refers to the use of less carbon in the raw materials fed to the EAF, in order to reduce the formation of CO. An example of a modification would be using clean scrap or using a different feedstock.	The proposed BACT methods for the EAF/LMS include good combustion/process operation and operation of a direct evacuation control (DEC) system on the EAF. The DEC system maximizes thermal oxidation of CO by regulating the amount of air introduced into the ductwork downstream of the furnace. Air injectors are employed in the Consteel Process to optimize the amount of oxygen available for CO combustion in the scrap preheating conveyor. CO combustion is progressively carried out through air injection in the preheater section. This technology is similar to oxygen injection, however oxidation is optimized throughout the ductwork.

Process	Pollutant
EAF/LMS	со

	Step	Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Oxygen Injection	Operating Practice Modification	Direct Evacuation Control (DEC)/ Good Combustion Practices (GCP)
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES		Additional fuel would be required to reach the ignition temperature of the waste gas stream as the typical operating temperatures are between 1,300 °F and 2,000 °F. Oxidizers are not recommended for controlling gases with halogen or sulfur containing compounds due to the formation of highly corrosive acid gases.	entering the catalyst bed where the oxidation reaction occurs, the temperature of the exhaust gas must be between 400 °F to 800 °F. Below	concentration would lead to increases in NO_x emissions due to the high temperature of the EAF exhaust gas stream causing thermal NO_x formation.	process, carbon serves as an ingredient that alters the properties of the product that affects its final characteristics, and carbon content is part of the specifications for many steel products. Carbon is not	Similar to oxygen injection, the increased oxygen concentration would lead to increases in NO _X emissions due to the high temperature of the EAF exhaust gas stream causing thermal NO _X formation. The key difference is in a DEC system the oxygen is injected downstream of the furnace where the EAF exhaust is allowed to cool and preheat the scrap resulting in the optimization of CO combustion, rather than thermal NO _X formation.
					database as a form of control of CO from Electric Arc Furnaces/Ladle Metallurgy		Included in the RBLC database as a form of control of CO from Electric Arc Furnaces/Ladle Metallurgy Stations.

Process	Pollutant
EAF/LMS	со

	Step	Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Oxygen Injection	Operating Pr Modificat
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	F at a residence time of 0.5 seconds. Below this	In order to prevent excess deterioration of controls due to the particulate loading of the exhaust stream from the EAF/LMS, catalytic oxidation controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). Catalytic oxidization of emissions for CO destruction would require raising the exhaust gas temperature to at least a temperature of 400 ° F. Below this temperature the reaction rate drops significantly and the oxidation of CO is no longer feasible. Since the exhaust temperature of the process after the particulate control device is less than 150 °F, which is well below the typical operating range of catalytic oxidizers and based on the high volume of airflow, large amounts of auxiliary fuel would be required to heat the stream to the required temperature for catalytic oxidation. This will create additional combustion emissions. This control technology has not been demonstrated in practice for control of CO emissions from the EAF/LMS. As a result, catalytic oxidation of CO emissions is considered infeasible for the control of CO emissions from the EAF/LMS.	control of CO emissions from the EAF/LMS. As a result, Oxygen Injection is considered infeasible for the control of CO emissions from the EAF/LMS.	Due to marketplac demands on the ty products produced required product of additional operatin modifications that CO emissions from proposed EAF is te infeasible. Addition control option wou constitute a "re-de source" that is not under PSD BACT.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency				
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)				

ractice	Direct Evacuation Control (DEC)/
tion	Good Combustion Practices (GCP)
ce	Technically feasible. DEC systems are widely
type of	demonstrated in practice.
d and the	
quality, any	
ing practice	
t will alter m the	
technically	
onally, this	
ould	
lefining the	
t allowable	
	Base Case
	Base Case

Process	Pollutant
EAF/LMS	со

	Step	Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Oxygen Injection	Operating Practice Modification		n Control (DEC)/ n Practices (GCP)
							Facility	CO Emission Limit (lb/ton)
							Comparable	e Facilities ^{3,4}
							Gerdau Ameristeel, NC	4.4
							CMC Mesa, AZ	4
							CMC Durant, OK	4
Step 5.	SELECT BACT						Nucor Frostproof, FL	3.5
							Nucor Sedalia, MO	3.5
							Proposed BACT:	4 lb CO/ton steel produced, on a 30- day rolling average basis, using DEC and GCP.

¹U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021. U.S. EPA, Office of Air Quality Planning and Standards, "Draft CAM Technical Guidance Document - Thermal Oxidizers", dated April 2002

² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018

³ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. Because CO emissions will depend to a greater extent on the type of furnace, CMC has appropriately included comparable facilities accordingly.

⁴ Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar ECS technologies to the proposed Project. The 4.0 lb/ton emission limit from the CMC Mesa and CMC Durant facilities is more stringent than the 4.4 lb/ton emission limit from the Gerdau Ameristeel facility. Actual CEMs data from the CMC Mesa facility, a facility very similar to the proposed facility, demonstrates that a lower emission limit of 3.5 lb/ton of Nucor Frostproof and Nucor Sedalia facilities is not achievable in practice due to process and scrap variability.

Table 23-3. NO_X Top-Down BACT Analysis for EAF and LMS

Process Pollutant

EAF/LMS	NO _X
---------	-----------------

	Step	Control Technology	Selective Catalytic Reduction (SCR) ¹	Selective Non-Catalytic Reduction (SNCR) ²	Non-Selective Catalytic Reduction ³	Low NO _x Controls	SCONOx Control ⁴	Direct Evacuation Control (DEC)/ Oxy-Injectors
Step 1.	IDENTIFY AIR POLLUTION CONTROL	Control Technology Description	Selective Catalytic Reduction (SCR) is an exhaust gas treatment technology where ammonia (NH ₃) is injected into exhaust gas upstream of a catalyst bed. SCR utilizes a catalytic reaction of Nitrogen Oxide (NO) or Nitrogen Dioxide (NO ₂) with ammonia to form diatomic nitrogen and water. The chemical reaction is shown below: Ammonia Injection $4NO + 4NH_3 + O_2 -> 4N_2 + 6H_2O$ $2NO_2 + 4NH_3 + O_2 -> 3N_2 + 6H_2O$ Relative to SNCR, the purpose of the catalyst in SCR is to reduce the temperature required for the reduction reaction to occur.	Selective Non-Catalytic Reduction (SNCR) is an exhaust gas treatment technology based on the reaction of urea or ammonia (NH ₃) and NO or NO ₂ . The urea or ammonia is injected into the exhaust gas to reduce NO to diatomic nitrogen and water. There are two basic designs for the application of SNCR: an ammonia based system and a urea- based process. The chemical reaction involving ammonia is the same as in SCR. The chemical reaction involving urea is shown below: Urea Injection $4NO + 2NH_2CONH_2 + O_2 -> 4N_2 + 2CO_2 + 4H_2O$ $4NO_2 + 2NH_2CONH_2 + O_2 -> 3N_2 + 2CO_2 + 4H_2O$ SNCR is "selective" in that the reagent reacts primarily with NO rather than other chemicals at the optimum operating temperature of the control device.	Nonselective catalytic reduction (NSCR) is an add-on NO _x control technology for exhaust streams with low O ₂ content. Nonselective catalytic reduction uses a catalyst reaction to simultaneously reduce NO _x , CO, and hydrocarbons (HC) to water, carbon dioxide, and nitrogen. The catalyst is usually a noble metal, and relies on the addition of hydrogen or a hydrogen-donating material such as natural gas in order to convert NO _x to N ₂ and water. The conversion occurs in two sequential steps, as shown in the following equations: Step 1 Reactions: $2CO + O_2 -> 2CO_2$ $2H_2 + O_2 -> 2H_2O$ $HC + O_2 -> 2CO_2 + H_2O$ Step 2 Reactions: $NO_x + CO -> CO_2 + H_2O$ $NO_x + H_2 -> H_2O + N_2$ $NO_x + H_2 -> H_2O + N_2$ The step 1 reactions remove excess O ₂ from the exhaust gas because CO and HC will more readily react with O ₂ than with NO _x . The O ₂ content of the stream must be kept below approximately 0.5 percent to ensure NO _x reduction.	include strategies to reduce the formation of NO _x by reducing the flame temperature or limiting the availability of oxygen. This includes overfire air, low excess air, and flue gas recirculation. These methods of control are commonly used on boilers that have a steady-state exhaust flow, controllable fuel/air flows, and a generally consistent temperature range. Unlike boilers, EAF exhaust has wide fluctuations in temperature, fuel/air flow rates, and	carbonate coated with catalyst to reduce NO _X emissions. SCONOx control has been demonstrated in use on gas turbines for the control of NO _X emissions. Gas turbines have relatively stable exhaust temperatures and flow rates during operation. An EAF exhaust temperature and flow rate can vary substantially during the	Oxy-injectors achieve combustion using oxygen rather than air, which reduces nitrogen levels in the furnace. The lower nitrogen levels result in a reduction in NO _x emissions generated in the furnace.
	TECHNOLOGIES		For the SCR system to operate properly, the exhaust gas must be within an optimum temperature range of approximately 500 to 800 °F with relatively stable exhaust temperatures. This temperature range is dictated by the catalyst, which is typically made from noble metals, base metal oxides such as vanadium and titanium, and zeolite-based material. These catalysts are susceptible to fouling over time, and generally have an active life of between two and five years. Exhaust gas temperatures greater than the upper limit of the catalyst will allow unreacted oxides of nitrogen (NO _X) and ammonia to pass through the system. The reaction must be held at stoichiometry on a continuous basis to avoid emitting either unreacted NO _x or unreacted ammonia.	relies on the use of ammonia at a proper stoichiometric ratio to react with the exhaust stream. As a result, SNCR has a lower tolerance to fluctuations in inlet NO_x concentrations than an SCR. The optimum exhaust gas temperature range for implementation of SNCR is 1,600 °F to 2,100 °F. For NH ₃ systems, operation at temperatures below this range results in unreacted ammonia, while operation above this temperature range results in oxidation of ammonia, forming additional NO_2 . The reaction must be	One type of NSCR system injects a reducing agent into the exhaust gas stream prior to the catalyst reactor to reduce the NO _x . Another type of NSCR system has an afterburner and two catalytic reactors (one reduction catalyst and one oxidation catalyst). In this system, natural gas is injected into the afterburner to combust unburned HC (at a minimum temperature of 1700°F). The gas stream is cooled prior to entering the first catalytic reactor where CO and NO _x are reduced. A second heat exchanger cools the gas stream (to reduce any NO _x reformation) before entering the second catalytic reactor where remaining CO is converted to CO ₂ . The operating temperatures for NSCR system range from approximately 700° to 1500°F, depending on the catalyst. For NO _x reductions of 90 percent, the temperature must be between 800° to 1200°F.		None	None

Table 23-3. NO_X Top-Down BACT Analysis for EAF and LMS

Process Pollutant

EAF/LMS NO_X

	Step	Control Technology	Selective Catalytic Reduction (SCR) ¹	Selective Non-Catalytic Reduction (SNCR) ²	Non-Selective Catalytic Reduction ³	Low NO _x Controls	SCONOx Control ⁴	Direct Evacuation Control (DEC)/ Oxy-Injectors
		RBLC Database Information	form of control of NO _x from Electric Arc Furnaces/Ladle Metallurgy Stations.	Not included in the RBLC database as a form of control of NO _x from Electric Arc Furnaces/Ladle Metallurgy Stations.		One facility listed in the RBLC search results refers to the use of "low- NO _X burners" for their EAF (GA- 0142). Further review shows this facility utilizes fundamentally different technology then the proposed CMC facility.	Not included in the RBLC database as a form of control of NO _X from Electric Arc Furnaces/Ladle Metallurgy Stations.	Included in the RBLC database as a form of control of NO_X from Electric Arc Furnaces/Ladle Metallurgy Stations.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	downstream of a particulate emission control technology (i.e., the baghouse). SCR would require raising the exhaust gas temperature to at least 500 °F. Below this temperature, the reaction rate drops significantly and the control of NO_X is no longer feasible. Since the exhaust temperature of the process is less than 150 °F, which is below the typical operating range of SCR,	significantly such that the control of NO _x is no longer feasible. If SCNR was employed further upstream in the EAF and LMS exhaust, significant variations in the exhaust temperature and NO _x concentration would make the implementation of SCNR technically infeasible. This control technology has not been demonstrated in practice for control of NO _x emissions from the EAF/LMS.	due to the particulate loading of the exhaust stream from the EAF/LMS, NSCR controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). NSCR would require raising the exhaust gas temperature to at least 700 °F. Below this temperature, the reaction rate drops significantly and the control of NO _X is no longer feasible. Since the exhaust temperature of the process is less than 150 °F, which is below the typical operating range of NSCR, and based on the high volume of airflow, large amounts of auxiliary fuel would be required to heat the stream to the required temperature. This will create additional combustion emissions. This control technology has not been demonstrated in practice for control of NO _X emissions from the EAF/LMS. As a result, NSCR is considered infeasible for the control of NO _X	reduce NO_x emissions. These controls are not readily available on an EAF. Additionally, an EAF requires high temperatures of approximately 3000 °F to melt the steel scraps and a lance to inject oxygen into the molten bath. A low	demonstrated for turbines and has not been demonstrated in practice for control of NO _x emissions from the EAF/LMS. As a result SCONO _x is considered infeasible for the control of NO _x emissions from the EAF/LMS.	Technically feasible. Oxy-injectors are widely demonstrated in practice.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency						Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)						Base Case

Table 23-3. NO_x Top-Down BACT Analysis for EAF and LMS

Process Pollutant NO_x EAF/LMS

	Step	Control Technology	Selective Catalytic Reduction (SCR) ¹	Selective Non-Catalytic Reduction (SNCR) ²	Non-Selective Catalytic Reduction ³	Low NO _x Controls	SCONOx Control ⁴	Direct Evacuation Oxy-Injo	• •
								Facility	NO _X Emission Limit (lb/ton)
								Comparable F	
								Nucor Decatur, AL	0.42
								Nucor Norfolk, NE	0.42
								Nucor Tuscaloosa, AL	0.35
								Gerdau Ameristeel, NC	0.34
Step 5.	SELECT BACT							CMC Mesa, AZ	0.3
								Nucor Frostproof, FL	0.3
								CMC Durant, OK	0.3
								Nucor Sedalia, MO	0.3
								Gerdau Macsteel, MI	0.27
									0.3 lb NO _x / ton
								Proposed BACT:	steel produced
									using DEC and Oxy-
									Injectors.

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Catalytic Reduction (SCR))," EPA-452/F-03-032 ² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Non-Catalytic Reduction (SNCR))," EPA-452/F-03-031 U.S. EPA, Air Economics Group, "Selective Noncatalytic Reduction", John Sorrels, et. al., dated April 2019.

³ U.S. EPA, Office of Air Quality Planning and Standards, "CAM Technical Guidance Document - Nonselective Catalytic Reduction", dated April 2002.

⁴ December 20, 1999 Letter from John Devillars, Regional Administrator to Arthur Rocque, Jr., Commissioner of the EPA Department of Environmental Protection, titled "Recent SCONOx Pollution Prevention Control System Development".

⁵ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. CMC has selected comparable facilities taking into account not iust the type of furnace and product but also the pollutant's generation factors. ⁶ While only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies to the proposed EAF/LMS (i.e., ECS Process and Micro Mill), CMC has provided comparisons to other, recent, mini-mill NOX BACT limits as well. NOX generation in both mini- and micro-mills is driven predominantly by thermal NOX, in which atmospheric

Table 23-4. SO2 Top-Down BACT Analysis for EAF and LMS Process Pollutant

Process Pollutant EAF/LMS SO2

	Step	Control Technology	Impingement-Plate/Tray-Tower Scrubber ¹	Packed-Bed/Packed-Tower Wet Scrubber ²	Spray-Chamber/Spray-Tower Wet Scrubber ³	Flue Gas Desulfurization (FGD) ⁴	Lime Fluxing	Good Process Operation
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES			Scrubbing liquid (e.g., NaOH), which is introduced above layers of variously shaped packing material, flows concurrently against the flue gas stream. The acid gases are absorbed into the scrubbing solution and react with alkaline compounds to produce neutral salts.	Spray tower scrubbers introduce a reagent slurry as atomized droplets through an array of	Flue Gas Desulfurization (FGD) is a broad category of control technologies that can include spray dry, dry, a form of dry scrubbing known as a lime coated baghouse, and wet scrubbing. FGD is a similar process as wet scrubbing but it uses an alkaline reagent to react with SO_2 to produce a solid compound, either calcium or sodium sulfate. These compounds are then removed by a particulate control device. The alkaline reagent is typically sodium carbonate or slaked lime. The reagent in FGD is typically injected in the flue gas utilizing a spray tower or injection directly into the duct.	acidic metal oxides and protect the lining of the EAF and ladle but not for purposes of emission (SO2) control.	Sulfur enters the EAF steelmaking process as a component of scrap metal and carbon sources. The carbon products and scrap metals are combined in the EAF for steelmaking chemistry and the foamy slag process. A small amount of sulfur may be present as extraneous materials (i.e., oil, grease, plastics, etc.) in the scrap metal. Sulfur in the feed materials tends to collect in the slag. Sulfur reacts in the molten metal to form calcium and magnesium sulfides in the slag, with excess principally in the form of calcium sulfide, since there is free calcium residual in the slag from the added lime. Some of the sulfur may react with injected oxygen or oxidize at the slag surface or in the furnace head space to form SO ₂ and be exhausted from the furnace.
			The ideal temperature range for SO_2 removal in a wet gas scrubber is 40 to 100 °F. Waste slurry formed in the bottom of the scrubber requires disposal.		The ideal temperature range for SO_2 removal in a wet gas scrubber is 40 to 100 °F. Waste slurry formed in the bottom of the scrubber requires disposal.	The ideal temperature range for SO ₂ removal in Flue Gas Desulfurization is 100 to 1,830 °F, depending on the type of system used (wet, spray dry, dry, or lime coated baghouse).	Lime is added in the steel making process remove impurities (e.g., silica, phosphorus, etc.) but not for purposes of emission control.	It is estimated that most of the input sulfur is retained in the steel and reaction compounds in the slag and baghouse dust. Thus, the nature of the EAF process results in good control of potential SO_2 emissions.
		RBLC Database Information	Not included in the RBLC database as a form of control of SO_2 from Electric Arc Furnaces/Ladle Metallurgy Stations.	Not included in the RBLC database as a form of control of SO_2 from Electric Arc Furnaces/Ladle Metallurgy Stations.	Not included in the RBLC database as a form of control of SO_2 from Electric Arc Furnaces/Ladle Metallurgy Stations.			Included in the RBLC database as a form of control of SO_2 from Electric Arc Furnaces/Ladle Metallurgy Stations.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS		operating range. This control technology has not been demonstrated in practice for control of SO_2 emissions from the EAF/LMS. As a result, Impingement-Plate/Tray-Tower Scrubber is	emissions from the EAF/LMS. As a result, Impingement-Plate/Tray-Tower Scrubber is considered infeasible for the control of SO ₂	operating range. This control technology has not	lower sulfur steel that utilizes correspondingly lower sulfur feedstocks. These feedstocks result in lower SO2 exhaust concentrations. The high volumetric flow rate associated with EAF exhaust and the low SO2 concentrations of the exhaust stream are outside the levels generally controlled by flue gas desulfurization systems such as lime injection and would make efficient operation of the Flue Gas Desulfurization infeasible. Gerdau Macsteel is an electric arc furnace utilizing a lime injection baghouse but is more dissimilar to the proposed Project than similar. The Macsteel operation is a producer of specialty grade higher-sulfur steel using a	dissolved oxygen in it. Injecting lime in addition to what is required by the process to protect the EAF vessel will only increase operating costs and will not impact SO2 emissions. The ladle metallurgy station also has a process requirement for lime but adding more lime than required will impact the viscosity and effectiveness of the slag in the ladle which will deteriorate the transfer of sulfur and other impurities from the steel to the ladle slag. For these reasons lime fluxing for the control of SO2 emissions is not supported by steelmaking chemistry and is technically infeasible for the proposed EAF/LMS.	In order to ensure that low amounts of sulfur enter the process, CMC maintains a scrap management plan to ensure minimal addition of sulfur from unwanted non-process materials. This option is considered technically feasible. Good Process Operation is widely demonstrated in practice.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency		L	l 			Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)						Base Case

Table 23-4. SO₂ Top-Down BACT Analysis for EAF and LMS

Process	Pollutant
EAF/LMS	SO ₂

	Step	Control Technology	Impingement-Plate/Tray-Tower Scrubber ¹ Packed-Bed/Packed-Tower Wet Scrubber ²	Spray-Chamber/Spray-Tower Wet Scrubber ³	Flue Gas Desulfurization (FGD) ⁴	Lime Fluxing	Good Proce	ss Operation
							Facility	SO ₂ Emission Limit (lb/ton)
							Comparable	e Facilities ^{4,5}
							Nucor Frostproof, FL	0.6
							CMC Durant, OK	0.6
							Nucor Sedalia, MO	0.5
							Nucor Tuscaloosa, AL	0.44
Cham E							Outokumpu Stainless, AL	0.38
Step 5.	SELECT BACT						Nucor Decatur, AL	0.35
							CMC Mesa, AZ	0.3
							SDSW STEEL MILL	0.24
							Nucor Blytheville, AR	0.2
							Big River Steel, AR	0.2
							Gerdau Ameristeel, NC	0.16
							Proposed BACT:	0.3 lb SO ₂ / ton steel produced using Good Process Operation.

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Impingement-Plate/Tray-Tower Scrubber)," EPA-452/F-03-012

² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Packed-Bed/Packed-Tower Wet Scrubbers)," EPA-452/F-03-015 ³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Spray-Chamber/Spray-Tower Wet Scrubber)," EPA-452/F-03-016

EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sneet (Spray-Chamber/Spray-Tower wet Scrubber), EPA
 U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization)," EPA-452/F-03-034

⁵ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. CMC has selected a broad list of comparable facilities because SO₂ generation and emissions are stoichiometric, i.e., depend on the totality of the sulfur inputs to the production process from all requirement inputs including scrap, limestone, and other additives.

⁶ Because 5O2 generation and emissions are mainly driven by furnace inputs and chemistry, and because the inputs are inherently site-specific and depend on the availability of the various raw materials such as scrap (appropriate for the desired product-mix), limestone, and carbon, etc., comparing numerical limits established for other mills can result in inappropriate determinations for BACT. The proposed BACT limit of 0.3 lb/ton steel was developed via a reasonable balancing of site-specific inputs consistent with the product mix and availability of local inputs that are proposed for the Project along with a reasonable compliance margin.

ProcessPollutantEAF/LMSPM/PM10/PM2.5

	Stop	Control	Electrostatic	Inertial Collection Systems	Mat Camble - 4	T	
	Step	Technology	Precipitator (ESP) ^{1,2}	(Cyclones) ³	Wet Scrubber ⁴	Incinerators ⁵	
		Control Technology Description	stream onto a collection surfaces (i.e., an electrode). A wet ESP can be used in this application to reduce condensable and filterable particulate matter (PM) emissions formed due to SO ₂ ; a dry ESP would reduce filterable particulate matter only. ESPs have been used on solid fuel combustion devices and in	Consists of one or more conically shaped vessels in which the exhaust gas stream follows a circular motion prior to the outlet. PM enters the cyclone suspended in the gas stream, which is forced into a vortex by the shape of the cyclone. The inertia of the PM resists the directional change of the gas, resulting in an outward movement under the influence of centrifugal forces until they strike the cyclone wall. The PM is caught in a thin laminar layer of air next to the cyclone wall and is carried downward by gravity to the collection hopper.	Scrubbers can have high removal efficiency for streams with a steady state exhaust. The scrubber operates with a high pressure drop to maintain	Thermal Incinerators are also referred to as direct flame incinerators, thermal oxidizers, or afterburners. They are primary used for volatile organic compounds (VOC) but some particulate matter commonly described as soot will be destroyed to various degrees. Soot are particles formed from the incomplete combustion of hydrocarbons, coke, or carbon residue.	
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Other Considerations	used periodically to impart a vibration or shock to dislodge the deposited PM on dry ESP electrodes. The dislodged PM is collected in hoppers. In wet ESP, the collected particles are washed off of the collection plates by a small flow of trickling water.	In some cases, thermal insulation is used to reduce heat loss and cold air from entering the system. Cold air can cause gas quenching and condensation which leads to corrosion, dust buildup, and plugging of the hopper or dust removal system. Inertial collection systems have been operated with inlet gas temperatures as high as 1000°F.	Wet scrubbing uses a significant amount of water and produces a wastewater stream that must be properly disposed.	Depending on the chemical composition of the particulate, the control efficiency for an incinerator can vary from to 99% for particulate matter 10 microns or less aerodynamic diameter (PM ₁₀). This control technology has been demonstrated in the petroleum and coal, chemical products, primary metal, electronics, electric and gas, food, mining, and lumber industries.	Fabric filters are susce fabrics must be selecte may present fire or exp

Baghouse/Fabric Filter⁶

ses are collected and passed through a tightly woven or ed in sheets, cartridges, or bags that collect PM via sieving and The dust cake that accumulates on the filters increases and eventually falls into a hopper for removal. Various include pulse-jet, reverse-air, and shaker technologies.

ceptible to corrosion and blinding by moisture. Appropriate cted for specific process conditions. Accumulations of dust explosion hazards.

ProcessPollutantEAF/LMSPM/PM10/PM2.5

	0	Control	Electrostatic	Inertial Collection Systems			
	Step	Technology	Precipitator (ESP) ^{1,2}	(Cyclones) ³	Wet Scrubber ⁴	Incinerators ⁵	
		RBLC Database Information	Not included in RBLC for the control of particulate emissions from the Electric Arc Furnaces/Ladle Metallurgy Stations. The proposed control train employs a baghouse for	Not included in RBLC for the control of particulate emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. The proposed control train employs a baghouse for control	Not included in RBLC for the control of particulate emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. The proposed control train employs a baghouse for	Not included in RBLC for the control of particulate emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. The proposed control train employs a baghouse for	Baghouses are includ emissions from the El Technically feasible. ⁻ baghouses are widely
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	control of PM, PM ₁₀ and PM _{2.5} emissions. Additional particulate removal is not practical; moreover, the ESP would create adverse energy and environmental impacts (due to the power needed to generate the high voltage electrostatic	of PM, PM ₁₀ and PM _{2.5} emissions. Additional particulate removal is not practical and a cyclone would be less efficient than a baghouse. This control technology has not been demonstrated in practice for control of PM emissions from the EAF/LMS. As a result, a cyclone is considered infeasible for the control of PM emissions from the EAF/LMS.	control of PM, PM ₁₀ and PM _{2.5} emissions. Additional particulate removal is not practical; moreover, the Wet Scrubber would create adverse energy impacts (due to the increase in pressure drop across the system). This control technology has not been demonstrated in practice for control of PM emissions from the EAF/LMS. As a result, a Wet Scrubber is considered	control of PM, PM ₁₀ and PM _{2.5} emissions. Additional particulate removal is not practical; moreover, the Incinerator would create adverse environmental impacts (by creating additional combustion emissions). This control technology has not been demonstrated in practice for control of PM emissions from the	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency					

Baghouse/Fabric Filter⁶

luded in the RBLC as a common form of control for particulate e Electric Arc Furnace/Ladle Metallurgy Stations.

e. The proposed control train employs a baghouse and ely demonstrated in practice.

Base Case

Process	Pollutant
EAF/LMS	PM/PM ₁₀ /PM _{2.5}

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Incinerators ⁵	
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)					

Baghouse/Fabric Filter⁶

Base Case

Process Pollutant EAF/LMS $PM/PM_{10}/PM_{2.5}$

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Incinerators ⁵		Baghouse/Fabric Filter ⁶	
							Facility	РМ Туре	PM Emission Limit (gr/dscf)
								Comparable Facilities ^{7,8,9}	
								Particulate matter, total $< 10 \mu$	0.0052
							Nucor Steel, WV	Particulate matter, total < 2.5 μ (TPM2.5)	0.0052
								Particulate matter, filterable (FPM)	0.0018
							Nucor Decatur,	Particulate matter, total (TPM)	0.0052
							AL	Particulate matter, filterable (FPM)	0.0018
	SELECT BACT						Nucor Tuscaloosa,	Particulate matter, total < 10 µ (TPM10)	0.0052
Step 5.							AL	Particulate matter, total < 2.5 µ (TPM2.5)	0.0049
510p 51	SELECT BACT						Particulat	Particulate matter, filterable (FPM)	0.0018
							CMC Durant OK	Particulate matter, total < 10 μ (TPM10)	0.0024
						CMC Durant, OK	Particulate matter, total < 2.5 μ (TPM2.5)	0.0024	
								PM10 Filterable and Condensable	0.0024
							CMC Mesa, AZ	PM2.5 Filterable and Condensable	0.0024
								PM filterable	0.0018
							Nucor Frostproof,	Particulate matter, total (TPM)	0.0024
							FL	Particulate matter, filterable (FPM)	0.0018
							Nucor Sedalia, MO	Total PM10, PM2.5, and PM	0.0024
							, 	Filterable PM	0.0015
							Proposed BACT:	0.0052 gr/dscf (total P 0.0018 gr/dscf (PM filter Baghouse/Fabric	able) using a

Process Pollutant EAF/LMS PM/PM₁₀/PM_{2.5}

Cham	Control	Electrostatic	Inertial Collection Systems	Wet Scrubber ⁴	T.,	
Step	Technology	Precipitator (ESP) ^{1,2}	(Cyclones) ³	Wet Scrubber ⁺	Incinerators	

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Pipe Type)," EPA-452/F-03-029.

² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Plate Type)," EPA-452/F-03-030.

³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Momentum Separators)," EPA-452/F-03-008

⁴ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization (FGD) - Wet, Spray Dry, and Dry Scrubbers)," EPA-452/F-03-034.

⁵ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Thermal Incinerator)," EPA-452/F-03-022.

⁶ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.

⁷ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. CMC has selected comparable facilities taking into account not just the type of furnace and product but also the pollutant's generation and control aspects.

⁸ Filterable PM generation in an EAF (whether a micro- or mini-mill) is due to the complex and vigorous physical and chemical processes that occur during the charging, melting, and tapping of the furnace. This can be inherently variable (i.e., with no ability of the operator to control these processes) over time in a single heat. Regardless of the generation mechanisms, however, the filterable PM emissions depend largely on the air pollution control device, which, in the case of both mini- and micro-mills is universally a baghouse. The proposed Project will utilize a baghouse, therefore, CMC has summarized recent BACT determinations for both mini- and micro-mills. While the analysis shows that there is one lower determination of 0.0015 grains/dscf, CMC believes a BACT limit of 0.0018 grains/dscf is more appropriate considering a proper compliance margin as well as accounting for measurement aspects at these low levels.

⁹ In contrast to filterable PM, whose generation in the EAF is highly variable, condensable PM generation can vary even more variable because it can be created not just in the EAF (and survive the high-temperature environment of the EAF) but also in the exhaust gas path from the EAF to the baghouse and more, importantly, after the baghouse, as the gases cool and certain types of compounds such as sulfur-compounds and semi-volatile organics can form via condensation. Due to the myriad formation mechanisms, condensable PM formation after the baghouse is inherently variable with little to no control of the operator other than managing proper scrap mix and additive injections. The proposed Project will use the best scrap quality consistent with its product mix. Based on these considerations, setting the BACT limit is largely a matter of determining the inherent variability of the condensable PM that is determined at the exist of the baghouse and using a reasonable compliance margin such that inherent, uncontrollable variability during a test (with its own set of measurement challenges) does not result in non-compliance that is no fault of the operator. The proposed BACT limit for total PM, i.e., 0.0052 grains/dscf, including both filterable and condensable components is based on CMC's review of test data from baghouse-equipped mini- and micro-mills in the US that have been reported by various operators - and, specifically, the large variability observed in such tests, even on a run-to-run basis under close to identical EAF and test conditions.

Baghouse/Fabric Filter⁶

Process Pollutant EAF/LMS VOC

	Step	Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Carbon Adsorption ³	Biofiltration ⁴	Condenser ⁵	Good Process Control
		Control Technology Description	Utilizes an open flame or combustion within an enclosed chamber to oxidize pollutants. Thermal Oxidation has been a proven technology in controlling Volatile Organic Compounds (VOC) emissions from processes with high VOC usage (i.e., painting, polymer manufacturing, cleaning, etc.) but not EAFs.	Catalytic oxidation allows oxidation to take place at a faster rate and at a lower temperature than is possible with thermal oxidation. VOC emissions can be controlled via catalytic oxidation. The oxidation is facilitated by the presence of the catalyst and carried out by the same basic chemical reaction as thermal oxidation.	highly porous solid with a large	compounds. This technology has been successfully applied in full-	cool and condense the vapor stream. Condensers are designed for a specified	The scrap metal used in the steelmaking process can contain plastics and organic liquids (i.e., oils) that may emit VOC during processing. In order to reduce the amount of VOC containing material introduced in the process a scrap management plan is used. The scrap management plan outlines procedures for sorting scrap and removing unwanted materials that may emit VOC. The operating temperature of the EAF is approximately 3,000 °F which is high enough to oxidize any VOC in the system. Thus, the nature of the EAF process results in good control of potential VOC emissions.
Step 1	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Other Considerations	Thermal Oxidization of VOC occurs at temperatures between 1,100 and 1,200 °F. Below this temperature range, the rate of oxidation of VOC drops significantly and the effective control of VOC is no longer feasible.	Several noble metal-enriched catalysts at high temperatures promote this reaction. Prior to entering the catalyst bed where the oxidation reaction occurs, the temperature of the exhaust gas must be between 400 °F to 800 °F. Below this temperature range, the reaction rate drops sharply and effective oxidation of VOC is no longer feasible. Above this temperature, conventional oxidation catalysts break down and are unable to perform their desired functions. Dust and compounds in the exhaust gas may foul the catalyst, leading to decreased activity. Catalyst fouling occurs slowly under normal operating conditions and may be accelerated by even moderate sulfur concentrations in the exhaust gas. The catalyst can be chemically washed to restore its effectiveness, but eventually irreversible degradation occurs. In order to slow the fouling and deterioration of the catalyst due to the contaminants in the exhaust stream from the EAF/LMS, catalytic oxidation controls would need to be located downstream of a particulate emission control technology.	million (PPM) of VOC, it may not operate effectively below this concentration. The ideal temperature range for physical adsorption is 130 °F. Above this temperature, the adsorption capacity of the adsorbent decreases. Particulates in the exhaust stream can clog the porous material decreasing the lifespan of the process.	organic compound concentrations of approximately 1,000 ppm or less. Biofilters are best suited to steady-state processes that do not have significant outages; the microorganisms tend to die off during extended process downtimes that tend to result in changes to the temperature,	A typical condenser cannot reach temperatures below 100 °F and as a result high VOC removal rates are not possible unless the VOC condenses at high temperatures. Particulates in the exhaust stream can cause fouling leading to excessive maintenance and decreased efficiency. Additionally, low VOC concentrations in the exhaust streams cause the partial pressures of the VOC to be too low for condensation to occur resulting in a low removal rate.	None

 Process
 Pollutant

 EAF/LMS
 VOC

	Step	Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Carbon Adsorption ³	Biofiltration ⁴	Condenser ⁵	Good Process Control
		RBLC Database Information		Not included in the RBLC database as a form of control of VOC emissions from Electric Arc Furnaces/Ladle Metallurgy Stations.	Not included in the RBLC database as a form of control of VOC emissions from Electric Arc Furnaces/Ladle Metallurgy Stations.	emissions from Electric Arc Furnaces/Ladle Metallurgy	database as a form of	Included in RBLC. Good Combustion and/or Process Control are included in the RBLC as a common form of control for VOC emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	controls due to the particulate loading of the exhaust stream from the EAF/LMS, thermal oxidation controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). Thermal Oxidization of emissions for VOC destruction would require raising the exhaust gas temperature to at least a temperature of 1,100 °F. Below this temperature, the reaction rate drops significantly and the oxidation of VOC is no longer feasible. Since the exhaust temperature of the process after the particulate control device is less than 150 °F, which is well below the typical operating range of thermal oxidizers, and based on the high volume of airflow, large amounts of auxiliary fuel would be required to heat the stream to the required temperature for thermal oxidation. This will create additional combustion emissions. The high temperatures involved in thermal oxidation will also result in additional NO _X emissions. This control technology has not	which is well below the typical operating range of catalytic oxidizers, and based on the high volume of airflow, large amounts of auxiliary fuel would be	by potentially increasing the amount of solid waste disposal. The high volumetric flow rate associated with EAF exhaust and the low VOC concentrations of the exhaust stream would make efficient operation of Carbon Adsorption infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the EAF/LMS. As a result, Carbon Adsorption is considered infeasible for the control of VOC emissions from the EAF/LMS.	environmental impacts by potentially increasing the amount of solid waste disposal. A Biofilter must be located downstream of the particulate control device and the exhaust is at approximately 150 °F at that point. This is above the operational temperature of a biofilter. The high volumetric flow rate associated with EAF exhaust and the low VOC concentrations of the exhaust stream would make efficient operation of Biofiltration infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the EAF/LMS. As a result, Biofiltration is considered infeasible for the control of VOC	increasing the amount of liquid waste disposal). The high volumetric flow rate associated with EAF exhaust and the low VOC concentrations of the exhaust stream would make efficient operation of a Condenser infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the EAF/ LMS. As a result, a	In order to ensure that low amounts of VOC enter the process, CMC maintains a scrap management plan to ensure minimal addition of VOC from unwanted non-process materials. Technically feasible. Good Process Control is widely demonstrated in practice.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency						Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE	Cost Effectiveness (\$/ton)						Base Case

Process	Pollutant
EAF/LMS	VOC

	Step	Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Carbon Adsorption ³	Biofiltration ⁴	Condenser ⁵	Good Proces	s Control
Step 5.	SELECT BACT							Facility Comparable F Gerdau Ameristeel, NC CMC Mesa, AZ Nucor Frostproof, FL CMC Durant, OK Nucor Sedalia, MO	0.34 0.3 0.3 0.3 0.3 0.3 0.3 lb VOC/ ton steel produced
								Proposed BACT:	using Good Combustion and/or Process Control.

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021. U.S. EPA, Office of Air Quality Planning and Standards, "Draft CAM Technical Guidance Document - Thermal Oxidizers", dated April 2002 ² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018

³ U.S. EPA, Air Economics Group, "Carbon Adsorbers", dated October 2018.

⁴ U.S. EPA, Office of Air Quality Planning and Standards, "Using Bioreactors to Control Air Pollution" EPA-456/R-03-003.

⁵ U.S. EPA, Office of Air Quality Planning and Standards, "Refrigerated Condensers" EPA-452/B-02-001.

⁶ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. Because VOC emissions will depend to a greater extent on the type of furnace, CMC has appropriately included comparable facilities accordingly. ⁷ Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill). The 0.30 lb/ton emission limit from the CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities is more stringent than the emission limit from the Gerdau Ameristeel facility.

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

St	tep	Control Technology	DC Arc Furnace ¹	Scrap Preheating, Post- Combustion—Shaft Furnace ¹	Airtight Operation ¹	CONTIARC® Furnace ¹	Twin-Shell Furnace with Scrap Heating (CONARC®) ¹
Step 1.	IDENTIFY AIR POLLUTION	Control Technology Description	The DC Arc Furnace technology replaces the normal three electrodes (one for each phase) with one large electrode that uses direct current instead of alternating current for heating the scrap in the EAF. Based on the distinctive feature of using the heat and magnetic force generated by the current in melting, this arc furnace achieves an energy saving of approximately 5 percent in terms of power unit consumption in comparison to the 3-phase alternating current arc furnace.	preheat the scrap prior to it being introduced into the EAF for melting. This design was developed as a method of reducing power consumption during the heating process.	During a heating cycle of the EAF, large quantities of ambient air enters the EAF. This air is heated in the furnace and exits with the fumes at high temperature (around 1,800°F); heating the air results in significant thermal losses. Of the associated cost savings that can be attributed to this technology, 80 percent can be attributed to the reduction in the heat losses from the flue gases and 20 percent can be attributed to the reduced thermal losses due to reduced tap-to-tap time.	The CONTIARC® furnace is fed continuously with material in a ring between the CONTIARC shaft and the outer furnace vessel; where the charged material is continuously preheated by the rising process gas in a counter-current flow, while the material continuously moves down.	A twin-shell furnace includes two EAF vessels with a common arc and power supply. In the two furnace shells, blowing lance and electrodes are used in turns. This makes it possible to process the charge materials of steel scrap, crude iron and direct-reduced iron (DRI) in various mixing ratios. This system increases productivity by decreasing tap-to-tap times, reducing refractory and electrode consumption, and improved ladle life.
	CONTROL TECHNOLOGIES	Other Considerations	This technology is limited to new installations because of the prohibitive scale of the retrofit costs. As of 2007 there are eight DC powered EAF operating in the U.S.	SIMETALCIS EAF. With the single shaft furnace, up to 70 kWh/ton (0.28 GJ/tonne) liquid steel of electric power can be saved. The finger shaft furnace allows energy savings up to 100 kWh/ton (0.40 GJ/tonne) liquid steel, which is about 25 percent of the overall electricity input into the furnace.	to operate an airtight EAF is the need to evaluate the		design is very effective at improving productivity and reducing the energy required for the melting process but it

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

S	tep	Control Technology	DC Arc Furnace ¹	Scrap Preheating, Post- Combustion—Shaft Furnace ¹	Airtight Operation ¹	CONTIARC® Furnace ¹	Twin-Shell Furnace with Scrap Heating (CONARC®) ¹
		RBLC Database Information	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations at an ECS Micro Mill.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	This option may reduce GHG emissions but may also increase the emission of other pollutants. Per the Section IV.A.3 of the New Source Review Workshop Manual, the use of a DC Arc Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions.	emissions but has the propensity to emit high levels of CO. The use of Scrap Preheating, Post Combustion - Shaf Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions.	practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, Airtight Operation is not a feasible option for the		This option may reduce GHG emissions but may increase emissions of other pollutants. This control technology has not been demonstrated in practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, a Twin-Shell Furnace is not a feasible option for the control of GHG emissions.

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

St	tep	Control Technology	DC Arc Furnace ¹	Scrap Preheating, Post- Combustion—Shaft Furnace ¹	Airtight Operation ¹	CONTIARC® Furnace ¹	Twin-Shell Furnace with Scrap Heating (CONARC®) ¹
Step 1.	IDENTIFY AIR POLLUTION	Control Technology Description	The DC Arc Furnace technology replaces the normal three electrodes (one for each phase) with one large electrode that uses direct current instead of alternating current for heating the scrap in the EAF. Based on the distinctive feature of using the heat and magnetic force generated by the current in melting, this arc furnace achieves an energy saving of approximately 5 percent in terms of power unit consumption in comparison to the 3-phase alternating current arc furnace.	preheat the scrap prior to it being introduced into the EAF for melting. This design was developed as a method of reducing power consumption during the heating process.	During a heating cycle of the EAF, large quantities of ambient air enters the EAF. This air is heated in the furnace and exits with the fumes at high temperature (around 1,800°F); heating the air results in significant thermal losses. Of the associated cost savings that can be attributed to this technology, 80 percent can be attributed to the reduction in the heat losses from the flue gases and 20 percent can be attributed to the reduced thermal losses due to reduced tap-to-tap time.	The CONTIARC® furnace is fed continuously with material in a ring between the CONTIARC shaft and the outer furnace vessel; where the charged material is continuously preheated by the rising process gas in a counter-current flow, while the material continuously moves down.	A twin-shell furnace includes two EAF vessels with a common arc and power supply. In the two furnace shells, blowing lance and electrodes are used in turns. This makes it possible to process the charge materials of steel scrap, crude iron and direct-reduced iron (DRI) in various mixing ratios. This system increases productivity by decreasing tap-to-tap times, reducing refractory and electrode consumption, and improved ladle life.
	CONTROL TECHNOLOGIES	Other Considerations	This technology is limited to new installations because of the prohibitive scale of the retrofit costs. As of 2007 there are eight DC powered EAF operating in the U.S.	SIMETALCIS EAF. With the single shaft furnace, up to 70 kWh/ton (0.28 GJ/tonne) liquid steel of electric power can be saved. The finger shaft furnace allows energy savings up to 100 kWh/ton (0.40 GJ/tonne) liquid steel, which is about 25 percent of the overall electricity input into the furnace.	to operate an airtight EAF is the need to evaluate the		design is very effective at improving productivity and reducing the energy required for the melting process but it

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

S	tep	Control Technology	DC Arc Furnace ¹	Scrap Preheating, Post- Combustion—Shaft Furnace ¹	Airtight Operation ¹	CONTIARC® Furnace ¹	Twin-Shell Furnace with Scrap Heating (CONARC®) ¹
		RBLC Database Information	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations at an ECS Micro Mill.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	This option may reduce GHG emissions but may also increase the emission of other pollutants. Per the Section IV.A.3 of the New Source Review Workshop Manual, the use of a DC Arc Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions.	emissions but has the propensity to emit high levels of CO. The use of Scrap Preheating, Post Combustion - Shaf Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions.	practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, Airtight Operation is not a feasible option for the		This option may reduce GHG emissions but may increase emissions of other pollutants. This control technology has not been demonstrated in practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, a Twin-Shell Furnace is not a feasible option for the control of GHG emissions.

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

S	tep	Control Technology	DC Arc Furnace ¹	Scrap Preheating, Post- Combustion—Shaft Furnace ¹	Airtight Operation ¹	CONTIARC® Furnace ¹	Twin-Shell Furnace with Scrap Heating (CONARC®) ¹
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency					
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)					
Step 5.	SELECT BACT						

¹ U.S. EPA, Office of Air and Radiation, "Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry", Sept. 2012.

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

Step		Control Technology	Carbon Capture and Sequestration	Foamy Slag Practice ¹	Oxy-Fuel Injectors ¹	Post Combustion of the Flue Gases ¹	Engineered Refractories ¹	Eccentric Bottom Tapping on Furnace ¹
Step 1.	Step 1. IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology Description	These emerging carbon capture and sequestration (CCS) technologies generally consist of processes that separate CO_2 from combustion process flue gas, compress, transport and then inject it into geologic formations such as oil and gas reservoirs, unmineable coal seams, and underground saline formations. Of the emerging CO_2 capture technologies that have been identified, only amine absorption is currently commercially used for state- of the art CO_2 separation processes.	radiation heat losses and increase the electric power efficiency of the EAF.	reduces the consumption of	Post-combustion utilizes the chemical energy in the CO to preheat scrap	other engineered refractories reduce ladle leakages and formation of slag during	Eccentric bottom tapping or similar methods reduce refractory and electrode consumption, and improve ladle life.
		Other Considerations	Amine absorption has been applied to processes in the petroleum refining and natural gas processing industries and for exhausts from gas-fired industrial boilers. Other potential absorption and membrane technologies are currently considered developmental.	None	None	None	None	None

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

St	ер	Control Technology	Carbon Capture and Sequestration	Foamy Slag Practice ¹	Oxy-Fuel Injectors ¹	Post Combustion of the Flue Gases ¹	Engineered Refractories ¹	Eccentric Bottom Tapping on Furnace ¹
		RBLC Database Information	Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	The EAF/LMS exhaust has significantly lower volumes and concentrations of GHGs then petroleum refining and natural gas processing facilities which makes Carbon Capture and Sequestration infeasible. Also, this control technology has not been demonstrated in practice for control of GHG emissions from the EAF/LMS. As a result, Carbon Capture and Sequestration is not a feasible option for the control of GHG emissions.	Te	echnically feasible. These tech	nologies and work practices are	e widely demonstrated in pract	ice.

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

S	сер	Control Technology	Carbon Capture and Sequestration	Foamy Slag Practice ¹	Oxy-Fuel Injectors ¹	Post Combustion of the Flue Gases ¹	Engineered Refractories ¹	Eccentric Bottom Tapping on Furnace ¹
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency				Base Case		
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)				Base Case		
						Emission Limit Evaluation		
						Comparable Facilities ^{2,3}		
Step 5.	SELECT BACT					(see end of table)		

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

St	tep	Control Technology	Bottom Stirring/Stirring Gas Injection ¹	Transformer Efficiency- Ultra-High Power Transformers ¹	Adjustable Speed Drives ¹	Improved Process Control ¹	Scrap Preheating Using the ECS Process ¹
Step 1.	IDENTIFY AIR POLLUTION CONTROL	Control Technology Description	-	5	variable speed drives lowers the speed of the dust collection fans to achieve power consumption savings.	real-time monitoring of the	Scrap preheating, as the primary method of operation, reduces power consumption of the EAF by using the off- gases of the EAF as the energy source for the preheat operation.
	TECHNOLOGIES	Other Considerations	None	UHP operations may lead to heat fluxes and increased refractory wear, making cooling of the furnace panels necessary. The additional heat loss partially offsets the power savings.	None	None	None

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

S	tep	Control Technology	Bottom Stirring/Stirring Gas Injection ¹	Transformer Efficiency- Ultra-High Power Transformers ¹	Adjustable Speed Drives ¹	Improved Process Control ¹	Scrap Preheating Using the ECS Process ¹
		RBLC Database Information	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	Τe	echnically feasible. These techr	ologies and work practices are	e widely demonstrated in pract	ice.

Process	Pollutant
EAF/LMS	GHG as measured in CO ₂ e

	Step	Control Technology	Bottom Stirring/Stirring Gas Injection ¹	Transformer Efficiency- Ultra-High Power Transformers ¹	Adjustable Speed Drives ¹	Improved F Contro
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency			Base Case	
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)			Base Case	
			Facility	GHG Emission Limit (lb/ton)		
					<i>Comparable Facilities</i> ^{2,3}	
			Gerdau Ameristeel, NC	-		
Step 5.	SELECT BACT		CMC Mesa, AZ	-		
			Nucor Frostproof, FL	438		
			CMC Durant, OK	535		
			Nucor Sedalia, MO	438		
			Proposed BACT:	Annual limit of 1	19,513 tpy using the techno	ologies and wor

 2 See Appendix B for a list of non-comparable facilities from the RBLC database.

³ Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill). All these facilities utilize one or more of the above feasible technologies/work practices.

Process ol ¹	Scrap Preheating Using the ECS Process ¹
rk practices	described above.

Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS Description

Process	Pollutant
EAF/LMS	Fluoride excluding Hydrogen Fluoride

Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Bagh
	Control Technology Description	be used in this application to reduce condensable and filterable fluoride containing particulate matter (PM) emissions formed; a dry ESP would reduce filterable PM only. ESPs have been used on solid fuel	, , ,	1. · ·	Process exhaust gasses tightly woven or felted to or bags that collect fluo other mechanisms. The filters increases collection hopper for removal. Va pulse-jet, reverse-air, a

ghouse/Fabric Filter⁵

ses are collected and passed through a ed fabric arranged in sheets, cartridges, luoride containing PM via sieving and The dust cake that accumulates on the ction efficiency and eventually falls into a Various cleaning techniques include , and shaker technologies.

Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS

Process	Pollutant
EAF/LMS	Fluoride excluding Hydrogen Fluoride

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Bagh	
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Other Considerations	to dislodge the deposited fluoride containing PM on dry ESP electrodes. The dislodged PM is collected in hoppers. In wet ESP, the collected particles are	In some cases, thermal insulation is used to reduce heat loss and cold air from entering the system. Cold air can cause gas quenching and condensation which leads to corrosion, dust buildup, and plugging of the hopper or dust removal system. Inertial collection systems have been operated with inlet gas temperatures as high as 1000°F.	Wet scrubbing uses a significant amount of water and produces a wastewater stream that must be properly disposed.		
		RBLC Database Information	Not included in RBLC for the control of fluoride emissions from the Electric Arc Furnaces/Ladle Metallurgy Stations.	Not included in RBLC for the control of fluoride emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Not included in RBLC for the control of fluoride emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.	Baghouses are included control for fluoride emis Furnace/Ladle Metallurg	

phouse/Fabric Filter⁵

eptible to corrosion and blinding by e fabrics must be selected for specific accumulations of dust may present fire or

ed in the RBLC as a common form of nissions from the Electric Arc urgy Stations.

Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS Process Pollutant

Process	Pollutant
EAF/LMS	Fluoride excluding Hydrogen Fluoride

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Bagh
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS		control of Fluoride containing PM emissions. Additional Fluoride removal is not practical; moreover, the ESP would create adverse energy and environmental impacts (due to the power needed to generate the high voltage electrostatic fields, and with wet ESP, to dispose of the wastewater stream).	for control of Fluoride emissions from the EAF/LMS. As a result, a cyclone is considered infeasible for the control of Fluoride emissions from the EAF/LMS.	control of Fluoride containing PM emissions. Additional Fluoride removal is not practical; moreover, the Wet Scrubber would create adverse energy impacts (due to the increase in pressure drop	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency				
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)				

house/Fabric Filter⁵

The proposed control train employs a uses are widely demonstrated in practice.

Base Case

Base Case

Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS

Process	Pollutant
EAF/LMS	Fluoride excluding Hydrogen Fluoride

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Baghouse/I	Fabric Filter ⁵
						Facility	Fluoride Emission Limit (lb/ton)
						Comparable	e Facilities ^{6,7}
						Nucor Frostproof, FL	0.059
						Nucor Sedalia, FL	0.059
						SDSW Steel, TX	0.01
Chan E						SDSW Steel, TX	0.01
Step 5.	SELECT BACT					CMC Mesa, AZ	0.01
						Nucor Norfolk, NE	0.0059
						Steel Mini Mill	0.0035
						Proposed BACT:	0.01 lb/ton for fluorides produced using a Baghouse/Fabric Filter.

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Pipe Type)," EPA-452/F-03-029.

² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Plate Type)," EPA-452/F-03-030.

³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Momentum Separators)," EPA-452/F-03-008

⁴ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization (FGD) - Wet, Spray Dry, and Dry Scrubbers)," EPA-452/F-03-034.

⁵ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.

⁶ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. Because fluoride emissions depend on additives used for fluidization and the maintenance of bath temperatures during tapping and refining, which depends on EAF design and product considerations, CMC has included an appropriate list of comparable facilities accordingly.

⁷ Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill), but only CMC Mesa, Nucor Frostproof, and Nucor Sedalia have BACT determinations for fluoride. The 0.01 lb/ton emission limit for fluorides excluding hydrogen fluoride is in line with the emission limit at the CMC Mesa facility and more conservative than the emission limits at the Nucor Frostproof and Nucor Sedalia facilities.

23.4 Non-Combustion Emission Sources Routed to Caster Vent

Non-combustion emission units routed to the Caster Vent (CV1) are listed below:

- Uncaptured emissions from the EAF and LMS
- One Continuous Caster (CAST1)
- Binder Usage associated with Ladle Refractory Repair (LB1)
- Binder Usage associated with Tundish Refractory Repair (TB1)
- Cutting Torches (TORCH1)

Some fraction of the emissions from these sources will be captured by the canopy and routed to the baghouse while the remainder of these emissions will be routed to CV1. For emission calculation purposes it is conservatively assumed that all these emissions will be routed to CV1.

Uncaptured emissions from the EAF and LMS are directly tied to the BACT analysis for the EAF/LMS as noted in Section 23.3. Uncaptured emissions from the continuous caster, binder usage, and cutting torches are small (ranging from 0.065 to 2.28 tpy) and not expected to generate a feasible BACT control proposal. Other potential emission reduction options (e.g., electrification of the cutting torches) constitute "redefining the source".

23.5 Combustion Emission Sources Routed to Caster Vent

Combustion emission units routed to the Caster Vent (CV1) are listed below:

- Three Ladle Preheaters (LPH1)
- Two Ladle Dryers (LD1)
- Two Tundish Preheaters (TPH1)
- One Tundish Dryer (TD1)
- One Tundish Mandril Dryer (TMD1)
- One shroud heater (SRDHTR1)
- 20 Meltshop Comfort Heaters (MSAUXHT)

Some fraction of the emissions from these sources will be captured by the canopy and routed to baghouse while the remainder of these emissions will be routed to CV1. For emission calculation purposes it is conservatively assumed that all these emissions will be routed to CV1.

Typically, a BACT analysis would be performed for each individual emission unit. However, it is conservative to group emission units that are routed to a single exhaust point (i.e., the caster vent) because the higher the magnitude of emissions, the more cost effective a potential control would be. The majority of the combustion equipment listed above have similar capacities ranging from 1 to 8 MMBtu/hr per unit which will yield substantially similar BACT evaluations based on RBLC reviews. Based on these considerations this BACT analysis assumes all of the above emission units are a single source for simplicity.

All of the listed combustion units can combust natural gas or propane. The RBLC search for combustion units rated under 100 MMBtu/hr did not yield any combustion units using propane as a primary fuel. Therefore, CMC is unable to identify any BACT limits for propane combustion. The top-down BACT analyses contained in this section were performed using the RBLC results for combustion units combusting natural gas only. Because no BACT limits could be developed for propane combustion, CMC is proposing Good Combustion Practices as BACT for all pollutants due to the combustion of natural gas or propane at the heaters. Table 23-9 to Table 23-14 contain the natural gas combustion only top-down BACT analyses.

Table 23-9. CO Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

Process	Pollutant
Combustion Units	
(including Small	00
Heaters and Dryers	0
<100 MMBtu/hr)	

		Control Technology	Non-Selective Catalytic Reduction (NSCR) ^{1,2}	SCONOX Catalytic Absorption System ³	Xonox Cool Combustion ³	Recuperative Thermal Oxidation ^{4,5,6}	Regenerative Thermal Oxidation ⁶	Catalytic Oxidation ⁷	Good Operating Practices
		Control Technology Description	Metallic catalysts convert NO _x , CO, and hydrocarbons to water, nitrogen, and CO ₂ .	This system utilizes a single catalyst to remove NO _x , CO, and VOC through oxidation.	A catalyst integrated into gas turbine combustors limits the production of NO_X through temperature control also resulting in reduced emissions of CO and VOC.	Oxidizes combustible materials by raising the temperature of the material above the auto-ignition point in the presence of oxygen and maintaining the high temperature for sufficient time to complete combustion.	Oxidizes combustible materials by raising the temperature of the material above the auto-ignition point in the presence of oxygen and	Similar to thermal incinerations; waste stream is heated by a flame and then passes through a catalyst bed that increases the oxidation rate more quickly and at lower temperatures.	Operate and maintain the equipment in accordance with good air pollution control practices and with good combustion practices.
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Other Considerations	Additional fuel is required as the typical operating temperatures are between 700 and 1,500 °F. This technique uses a fuel rich mixture.	The SCONOX Catalyst is sensitive to contamination by sulfur, so it must be used in conjunction with the SCOSOX catalyst, which favors sulfur compound absorption.	N/A	Additional fuel is required to reach the ignition temperature of the waste gas stream as typical operating temperatures are between 1,100 and 2,000°F. Oxidizers are not recommended for controlling gases with halogen or sulfur containing compounds due to formation of highly corrosive acid gases. Pretreatment to remove PM may be necessary for clogging prevention and/or catalyst poisioning. Additional fuel is required to reach the ignition temperature of the waste gas stream.	1,400 and 2,000 °F. Pretreatment to remove PM may be necessary for	Catalyst can be deactivated by certain catalyst poisons or other fouling contaminants such as silicone, sulfur, heavy hydrocarbons, and particulates. Operating temperatures between 600 800°F and not to exceed 1,250 °F.	N/A
		RBLC Database Information	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.
Step 2.	ELIMINATE TECHNINCALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically infeasible. Typically applied only to rich burn engine emissions.	Technically infeasible. Typically applied to power generation turbines.	Technically infeasible. Integrated only in gas turbine combustors.	Technically infeasible. Thermal oxidizers do not reduce emissions of CO from properly operated natural gas combustion units without the use of a catalyst.	Technically infeasible. Thermal oxidizers do not reduce emissions of CO from properly operated natural gas combustion units without the use of a catalyst.	Technically infeasible. Catalytic oxidation would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature.	Technically feasible. Good Operating Practices including good combustion practices has been widely selected as BACT for CO control from natural gas combustion units.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency							Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)							Base Case
Step 5.	Selec	t BACT							Good Operating Practices

 1 U.S. EPA, "Nitrogen Oxides (NO_X), Why and How they are Controlled," EPA-456/F-99-006R.

² U.S. EPA, "CAM Technical Guidance Document," Section B-16, January 2005.

³ California EPA, Air Resources Board, "Report to the Legislature: Gas-Fired Power Plant NOX Emission Controls and Related Environmental Impacts," http://www.arb.ca.go/research/apr/reports/12069.pdf

⁴ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Thermal Incinerator)," EPA-452/F-03-020.

⁵ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Recuperative Type)," EPA-452/F-03-020.

⁶ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021.

⁷ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018.

Table 23-10. NOx Top-Down BACT Analysis for Natural Gas Combustion Emission Sources Pollutant

 NO_x

Process	P
Combustion Units	
(including Small	
Heaters and Dryers	
<100 MMBtu/hr)	

		Control	Selective Catalytic Reduction	Selective Non-Catalytic	Non-Selective Catalytic	SCONOX Catalytic Absorption	Xonon Cool Combustion ⁵	Low-Nox Burn
l		Technology	(SCR) ¹	Reduction (SNCR) ²	Reduction (NSCR) ^{3,4}	System ⁵		
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology Description	A nitrogen-nased reagent (e.g., ammonia, urea) is injected into the exhaust stream downstream of the combustion unit. The reagent reacts selectively with the NO_X to produce molecular N_2 and water in a reactor vessel containing a metallic or ceramic catalyst.	A nitrogen based reagent (e.g., ammonia, urea) is injected into the exhaust stream and reacts selectively with NO _X to produce molecular N ₂ and water within the combustion unit.	Metallic catalysts convert NO _x , CO, and hydrocarbons to water, nitrogen, and CO ₂ .	Utilizes a single catalyst to remove NO _X , CO, and VOC through oxidation.	A catalyst integrated into gas turbine combustors limits the production of NO_X through temperature control also resulting in reduced emissions of CO and VOC.	combustion to inhibit of NO _x . Primary com
		Other Considerations	Typical operating temperatures are between 480-800°F. Unreacted reagent (ammonia slip) may form ammonium sulfates that may plug or corrode downstream equipment.	Typical operating temperatures are between 1,600-2,100°F. Unreacted reagent (ammonia slip) may form ammonium sulfates that may plug or corrode downstream equipment. The SNCR process produces N2O as a byproduct.		Typical operating temperatures are between 300-700°F. The SCONOX Catalyst is sensitvie to contamination by sulfur, so it must be used in conjunction with the SCOSOX catalyst, which favors sulfur compound absorption.	N/A	N/A
		RBLC Database Information	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Included in RBLC for dryers, preheaters, t furnaces etc.
Step 2.	ELIMINATE TECHNINCALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically infeasible. SCR would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature. These add-on controls are not appropriate for small combustion units ≤100 MMBtu/hr.	Technically infeasible. SNCR would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature. These add-on controls are not appropriate for small combustion units ≤100 MMBtu/hr.	combustion emissions, to raise the exhaust gas temperature to	Technically infeasible. Typically applied to power generation turbines and has not been demonstrated in practice for small combustion units.	Technically infeasible. Integrated only in gas turbine combustors.	Feasible
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency						Up to 8
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)						
Step 5.	SELECT	BACT						Low-NO _x Burne Operating F

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Catalytic Reduction (SCR))," EPA-452/F-03-032. ² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Non-Catalytic Reduction (SNCR))," EPA-452/F-03-031.

³ U.S. EPA, "Nitrogen Oxides (NOX), Why and How they are Controlled," EPA-456/F-99-006R.

⁴ U.S. EPA, "CAM Technical Guidance Document" Section B-16, January 2005

⁵ California EPA, Air Resources Board, "Report to the Legislature: Gas-Fired Power Plant NOX Emission Controls and Related Environmental Impacts," http://www.arb.ca.gov/reasearch/apr/reports/12069.pdf

rners (LNBs) ³	Oxy-Fuel Burners ³	Good Operating Practices
emplot multistaged hibit the formation ombustion occurs tures under oxygen- ns; secondary s in the presence	Oxy-fired burners achieve combustion using oxygen rather than air, which reduces nitrogen levels in the furnace. The lower nitrogen levels result in a reduction in NO _x emissions.	Operate and maintain the equipment in accordance with good air pollution control practices with good combustion practices.
	Oxy-fuel burners must be properly applied to prevent the formation of thermal NO_X due to the elevated flame temperatures.	N/A
for mini-mill s, boilers, heaters,	Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.
	Potentially Feasible	Feasible
o 80%	20%	Base Case
ners and Good Practices		

Table 23-11. SO₂ Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

Process	Pollutant
Combustion Units	
(including Small	SO ₂
Heaters and Dryers	302
<100 MMBtu/hr)	

		Control	Impingement-Plate/	Packed-Bed/Packed-Tower	Spray-Chamber/Spray-	Flue Gas Desulfurization ⁴	Good Operating
		Technology	Tray-Tower Scrubber ¹	Wet Scrubber ²	Tower Wet Scrubber ³		Practices
Step 1.	IDENTIFY AIR POLLUTION CONTROL	Control Technology Description	An impingement-plate scrubber promotes contact between the flue gas and a sorbent slurry in a vertical column with transversely mounted perforated trays. Absorption of SO_2 is accomplished by countercurrent contact between the flue gas and reagent slurry.	layers of variously shaped packing material, flows concurrently against the flue gas stream. The acid gases are absorbed into the scrubbing solution and react with alkaline compunds to produce neutral salts.	the column and travles upward	An alkaline reagent is introduced in a spray tower as an aqeous slurry (for wet systems) or pneumatically injected as a powder in the waste gas ductwork(for dry systems). Absorption of SO_2 is accomplished by the contact between the gas and reagent slurry or powder, which results in the formation of neutral salts.	Operate and maintain the equipment in accordance with good air pollution control practices and with good combustion practices, including the use of natural gas.
	TECHNOLOGIES	Other Considerations	The ideal temperature range for SO_2 removal in a wet gas scrubber is 40 to 100°F. Waste slurry formed in the bottom of the scrubber requires disposal.	scrubber is 40 to 100°F. To	The ideal temperature range for SO ₂ removal in a wet gas scrubber is 40 to 100°F. Waste slurry formed in the bottom of the scrubber requires disposal.	The ideal temperature range for SO_2 removal in a wet gas scrubber is 40 to 1,380°F. Chlorine emissions can result in salt deposition on the absorber and downstream equipment. Wet systems may require flue gas reheating downstream of the absorber to prevent corrosive condensation. Dry systems may require cooling inlet streams to minimize deposits.	N/A
		RBLC Database Information	Not included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.		Not included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.	dryers, preheaters, boilers, heaters, furnaces etc.	Included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.
Step 2.	ELIMINATE TECHNINCALLY INFEASIBLE OPTIONS	Feasibility Discussion	SO ₂ concentrations of the exhaust stream would make the efficient operation of the	exhaust stream would make	Technically infeasible. The low SO ₂ concentrations of the exhaust stream would make the efficient operation of the spray-chamber/spray-tower wet scrubber infeasible.	Technically infeasible. The low SO ₂ concentrations of the exhaust stream would make the efficient operation of the flue gas desulfurization infeasible.	Feasible

Table 23-11. SO₂ Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

Process	Pollutant
Combustion Units	
(including Small	SO ₂
Heaters and Dryers	302
<100 MMBtu/hr)	

		Control Technology	Impingement-Plate/ Tray-Tower Scrubber ¹	Packed-Bed/Packed-Tower Wet Scrubber ²	Spray-Chamber/Spray- Tower Wet Scrubber ³	Flue Gas Desulfurization ⁴	Good Operating Practices
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency					Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)					N/A
Step 5.	Select BACT						Good Operating Practices

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Impingement-Plate/Tray-Tower Scrubber)," EPA-452/F-03-012.

² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Packed-Bed/Packed-Tower Wet Scrubber)," EPA-452/F-03-015.

³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Spray-Chamber/Spray-Tower Wet Scrubber)," EPA-452/F-03-016.

⁴ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization)," EPA-452/F-03-034.

Table 23-12. PM Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

Process	Pollutant
Combustion Units	
(including Small	PM/PM ₁₀ /PM _{2.5}
Heaters and Dryers	FIM/FIM ₁₀ /FIM _{2.5}
<100 MMBtu/hr)	

		Control Technology	Baghouse/Fabric Filter ¹	Electrostic Precipitator (ESP) ^{2,3,4,5}	Incincerator ^{6,7}	Wet Scrubber ⁸	Cyclone ⁹	Good Operating Practices
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology Description	and other mechanisms. The dust cake that accumulates on the filters increases collection efficiency. Various cleaning techniques include pulse-jet, reverse-	waste gas and induce an electrical charge in the entrained particles. The resulting electrical field forces the charged particles to the collector walls form which the material may be mechanically dislodged and	hydrocarbons in exhaust stream. Recuperative	A scrubbing liquid introduced into the gas stream captures and collects entrained particles. In the case of a venturi scrubber, the turbulent airflow atomizes the scrubbing liquid to increase droplet-particle interaction. The droplets containing particles are typically seperated from the exhaust gas in a downstream cyclonic seperator and/or mist eliminator.		Operate and maintain the equipment in accordance with good air pollution control practices.
		Other Considerations	Accumulations of dust may present fire or explosion	significantly with dust resistivity. Air leakage and		Effluent stream requires wastewater treatment and solid was disposal. Sludge disposal may be costly. Wet scrubbers are particuarlt susceptible to corrosion. Typical operating temperatures between 40 - 750°F.	Cyclones typically exhibit lower efficiencies when collecting smaller particles. High-efficiency units may require substantial pressure drop. Unable to handle sticky and tacky materials. Typical operating temperatures Up to 1,000°F.	N/A

Table 23-12. PM Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

Process	Pollutant
Combustion Units	
(including Small	PM/PM ₁₀ /PM _{2.5}
Heaters and Dryers	PIM/PIM ₁₀ /PIM _{2.5}
<100 MMBtu/hr)	

		Control Technology	3 ,	Electrostic Precipitator (ESP) ^{2,3,4,5}	Incincerator ^{6,7}	Wet Scrubber ⁸	Cyclone ⁹	Good Operating Practices
		RBLC Database Information	Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.	Included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.
Step 2.	ELIMINATE TECHNINCALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically infeasible. Baghouses have not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill.	Technically infeasible. Electrostatic precipitators have not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill.	emissions and has not	Technically infeasible. Wet scrubbers have not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill.	Technically infeasible. Cyclones have not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill.	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency						Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)						N/A
Step 5.		ct BACT						Good Operating Practices

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.
 ² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Dry Electronic Precipitator (ESP)-Wire-Pipe Type)," EPA-452/F-03-027.
 ³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Dry Electronic Precipitator (ESP)-Wire-Plate Type)," EPA-452/F-03-028.
 ⁴ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electronic Precipitator (ESP)-Wire-Pipe Type)," EPA-452/F-03-029.
 ⁵ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electronic Precipitator (ESP)-Wire-Pipe Type)," EPA-452/F-03-029.
 ⁶ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electronic Precipitator (ESP)-Wire-Plate Type)," EPA-452/F-03-029.
 ⁶ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Recuperative Type)," EPA-452/F-03-020.
 ⁷ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Regemerative Type)," EPA-452/F-03-020.
 ⁸ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Regemerative Type)," EPA-452/F-03-021.
 ⁸ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Venuri Scrubber)," EPA-452/F-03-021.
 ⁸ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Venuri Scrubber)," EPA-452/F-03-021.

⁹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Cyclone)," EPA-452/F-03-005.

Table 23-13. VOC Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

Process	Pollutant
Combustion Units (including Small Heaters and Dryers <100 MMBtu/hr)	voc

		Control Technology	Thermal Oxidation ^{1,2,3}	Catalytic Oxidation ⁴	Carbon/Zeolite Adsorption ⁵	Biofiltration ⁶	Condenser ⁷	Good Operating Practices
		Control Technology Description	material above the auto-ignition point in the presence of oxygen and maintaining the high temperature for	and then passes through a catalyst bed that increases the oxidation	porous solid to selectively collect VOC from the gas stream. Adsorption collects VOC but does not destroy it.	Exhaust gases containing biodegradable organic compounds are vented, under controlled temperature and humidity, through biologically active material. The microorganisms contained in the bed of bio-material digest or biodegrade the organics to CO2 and water.	Condensers convery a gas or vapor stream to a liquid, allowing the organics within the stream to be recovered, refined, or reused and preventing	Operate and maintain the equipment in accordance with good air pollution control practices and with good combustion practices.
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Other Considerations	stream. Thermal oxidation occurs between 1,100 - 1,200°F.	certain catalyst poisons or other fouling contaminants such as silicone, sulfur, heavy	may melt the adsorbent. Adsorbed hydrocarbons may oxidize and cause bed fires.	Temperatures outside the specified range, acidic deposition, or dry exhaust systems will kill or deactivate the microorganisms. Biofiltration systems occupy a large equipment footprint. Large land requirement for traditional design. Operating temperatures between 60 - 105°F.	Energy required to drive the refrigeration system, typical condensers cannot reach temperatures below 100°F and thus removal rates are not possible unless VOC condenses at high temperature. Certain compounds may corrode the cooling coils and associated equipment. Particulate material may accumulate within the cooling chamber.	
		RBLC Database Information	dryers, preheaters, boilers, heaters,	dryers, preheaters, boilers,	dryers, preheaters, boilers,	Not included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.	Not included in RBLC for mini- mill dryers, preheaters, boilers, heaters, furnaces etc.	Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.
Step 2.	ELIMINATE TECHNINCALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically infeasible. Thermal oxidation would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature.	Technically infeasible. Catalytic oxidation would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature.	environmental impacts by potentially increasing the amount of solid waste disposal and the low VOC concentrations of the exhaust stream would make efficient	by potentially increasing the amount of solid waste disposal	Technically infeasible. Condensers would create adverse environmental impacts by potentially increasing the amount of solid waste disposal and the low VOC concentrations of the exhaust stream would make efficient operation infeasible.	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency						Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)						N/A

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Themral Incinerator)," EPA-452/F-03-022.

² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Recuperative Type)," EPA-452/F-03-020.

³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021.

⁴ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018.

⁵ U.S. EPA, "Choosing an Adsorption System for VOC: Carbon, Zeolite, or Polymers?" EPA-456/F-99-004

⁶ U.S. EPA, "Using Bioreactors to Control Air Pollution," EPA_456/F-03-003

⁷ U.S. EPA, "Refrigerated Condensers for Control of Organic Air Emissions," EPA-456/F-01-004

Table 23-14. GHG Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

Process	Pollutant
Combustion Units (including Small Heaters and Dryers <100 MMBtu/hr)	GHGs as CO_2e

		Control Technology	Carbon Capture and Sequestration	Good Operating Practices
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology Description	Emerging carbon capture and sequestration (CCS) technologies generally consist of processes that separate CO_2 from combustion process flue gas, compress, transport and then inject it into geologic formations such as oil and gas reservoirs, unmineable coal seams, and underground saline formations. Of the emerging CO_2 capture technologies that have been identified, only amine absorption is currently commercially used for state-of the art CO_2 separation processes.	Good Operating Practices for the emis sources from a steel mill routed to the Vent includes good combustion practi the use of natural gas in the Ladle/Tu Preheaters and Dryers, and the use o selected BACT technologies for the EA
		Other Considerations	Amine absorption has been applied to processes in the petroleum refining and natural gas processing industries and for exhausts from gas-fired industrial boilers. Other potential absorption and membrane technologies are currently considered developmental.	N/A
		RBLC Database Information	Not included in RBLC for the control of GHG emissions from the emission sources associated with a steel mill routed to the Caster Vent.	Included in the RBLC database for the of GHG emissions from the emission s associated with a steel mill routed to Caster Vent.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	This control technology has not been demonstrated in practice for control of GHG emissions from the emission sources located at a steel mill routed to the Caster Vent. As a result, Carbon Capture and Sequestration is not a feasible option for the control of GHG emissions.	Technically feasible. Good Operating I have been demonstrated in practice for control from the emission sources loca steel mill routed to the Caster Vent.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency		Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)		Base Case
Step 5.	SELECT BACT			Good Operating Practices

23.6 Rolling Mill, Cooling Beds, & Spooler Vents

After continuous casting, the steel is conveyed through the rolling mill which is a series of rolling stands that reduce the cross-sectional area and form the final rolled steel shapes. A 0.225 MMBtu/hr propane/natural gasfired bit furnace (BF1) is used to heat sample bars to verify sizing prior to rolling and 20 0.4 MMBtu/hr rolling mill comfort heaters (RMAUXHT) are used in the rolling mill system. Particulate and VOC emissions generated by the rolling mill will be routed through the rolling mill vent (RMV1). The products that exit the rolling mill are sent to the cooling beds where they will either receive a water quench or be allowed to cool in ambient air. Particulate and VOC emissions generated at the cooling beds will be routed through the cooling mill vent (CBV1). Steel that is not cast into straight products at the rolling mill is routed to the spooler to be spun into circular spools. Particulate and VOC emissions generated at the spooler will be routed through the spooler vent (SPV1). Table 23-15 provides a summary of the selected BACT controls and emission limits for pollutants emitted by the rolling mill, cooling beds and spooler vents, and Table 23-16 and Table 23-17 contain the top-down BACT analyses for emissions shown in Table 23-15.

Pollutant	Selected BACT Control	Selected BACT Limit (lb/hr)		
PM/PM _{2.5} /PM ₁₀	Good Process Operation	0.01 per source (PM Filterable, excluding Bit Furnace) 0.01 per source (PM ₁₀ Filterable + Condensable, excluding Bit Furnace) 0.01 per source (PM _{2.5} Filterable + Condensable, excluding Bit Furnace)		
VOC	Good Operating Practices	0.01 per source (excluding Bit Furnace)		

Table 23-15. Summary of Selected BACT for Rolling Mill, Cooling Beds, & Spooler Vents

Table 23-16. PM Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent Process Pollutant Rolling Mill & Cooling PM/PM10/PM25 Beds & Spooler

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Incinerators ⁵	Baghouse/Fabric Filter ⁶	Good Process Operation	
Step 1.		Control Technology Description	to SO ₂ ; a dry ESP would reduce filterable particulate matter only. ESPs have been used on solid fuel combustion devices and in non-ferrous metal processing facilities.	Consists of one or more conically shaped vessels in which the exhaust gas stream follows a circular motion prior to the outlet. PM enters the cyclone suspended in the gas stream, which is forced into a vortex by the shape of the cyclone. The inertia of the PM resists the directional change of the gas, resulting in an outward movement under the influence of centrifugal forces until they strike the cyclone wall. The PM is caught in a thin laminar layer of air next to the cyclone wall and is carried downward by gravity to the collection hopper.	Wet Scrubbers remove particulates through the impact of particles with water droplets. Wet Scrubbers can have high removal efficiency for streams with a steady state exhaust. The scrubber operates with a high pressure drop to maintain high removal efficiency.	Thermal Incinerators are also referred to as direct flame incinerators, thermal oxidizers, or afterburners. They are primary used for volatile organic compounds (VOC) but some particulate matter commonly described as soot will be destroyed to various degrees. Soot are particles formed from the incomplete combustion of hydrocarbons, coke, or carbon residue.	felted fabric arranged in sheets, cartridges, or bags that collect PM via sieving and other mechanisms. The dust cake that accumulates on the filters increases collection	Operate and maintain the equipment in accordance with good air pollution control practices.	
	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Other Considerations	Rappers or other mechanical mechanisms are used periodically to impart a vibration or shock to dislodge the deposited PM on dry ESP electrodes. The dislodget PM is collected in hoppers. In wet ESP, the collected particles are washed off of the collection plates by a small flow of trickling water. ESP systems are typically only used on continuous combustion sources. When used on an intermittent basis, the actual collection efficiency can range from 80-98 percent.	In some cases, thermal insulation is used to reduce heat loss and cold air from entering the system. Cold air can cause gas quenching and condensation which leads to corrosion, dust buildup, and plugging of the hopper or dust removal system. Inertial collection systems have been operated with inlet gas temperatures as high as 1000°F.	Wet scrubbing uses a significant amount of water and produces a wastewater stream that must be properly disposed.	Depending on the chemical composition of the particulate, the control efficiency for an incinerator can vary from to 99% for particulate matter 10 microns or less aerodynamic diameter (PM ₁₀). This control technology has been demonstrated in the petroleum and coal, chemical products, primary metal, electronics, electric and gas, food, mining, and lumber industries.	Fabric filters are susceptible to corrosion and bilnding by moisture. Appropriate fabrics must be selected for specific process conditions. Accumulations of dust may present fire or explosion hazards.	No other considerations	
		RBLC Database Information	Not included in RBLC for the control of particulate emissions from Rolling Mills.	Not included in RBLC for the control of particulate emissions from Rolling Mills.	Not included in RBLC for the control of particulate emissions from Rolling Mills.	Not included in RBLC for the control of particulate emissions from Rolling Mills.	Not included in RBLC for the control of particulate emissions from Rolling Mills.	Included in the RBLC as a common form of control for particulate emissions from Rolling Mills.	
Step 2.	ELIMINATE TECHNICALLY INFEASIBL OPTIONS	Feasibility Discussion	The ESP would create adverse energy and environmental impacts (due to the power needed to generate the high voltage electrostatic fields, and with wet ESP, to dispose of the wastewater stream). This control technology has not been demonstrated in practice for control of PM emissions from Rolling Mills. As a result, an ESP is considered infeasible for the control of PM emissions from Rolling Mills.	This control technology has not been demonstrated in practice for control of PM emissions from Rolling Mills. As a result, a cyclone is considered infeasible for the control of PM emissions from Rolling Mills.	create adverse energy impacts (due to the increase in pressure drop across the system).	The Incinerator would create adverse environmental impacts (by creating additional combustion emissions). This control technology has not been demonstrated in practice for control of PM emissions from Rolling Mills. As a result, an Incinerator is considered infeasible for the control of PM emissions from Rolling Mills.	This control technology has not been demonstrated in practice for control PM emissions from Rolling Mills. As a result, a Baghouse/Fabric Filter is considered infrashible for the control of PM emissions from Rolling Mills.	Technically feasible. Good Process Operation is widely demonstrated in practice.	

 Process
 Pollutant

 Rolling
 Mill &

 Mill &
 Cooling

 PM/PM10/PM125
 Beds &

 Spooler
 Verticity

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Incinerators ⁵	Baghouse/Fabric Filter ⁶	Good Proc	ess Operation
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency						Bas	e Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)						Bas	e Case
								Facility	Emission Limit (lb/hr)
								Compara	ble Facilities
								Nucor Steel Kankakee, IL	0.027 lb/hr (PM filterable) 0.027 lb/hr (PM ₁₀ filterable + condensable) 0.01 lb/hr (PM _{2.5} filterable + condensable) 0.01 lb/hr per source (PM
Step 5.	SELECT BACT							Proposed BACT:	0.01 lb/hr per source (PM filterable, excluding Bit Furnace) 0.01 lb/hr per source (PM ₁₀ filterable + condensable, excluding Bit Furnace) 0.01 lb/hr per source (PM ₂₅ filterable + condensable, excluding Bit Furnace) using Good Process Operation

ULS EPA, Office of Ar Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (FSP) - Wire Pipe Type)," EPA-452(F-03-023,
21.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (FSP)," Wire Pipe Type)," EPA-452(F-03-023,
21.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (FSP)," Wire Pipe Type)," EPA-452(F-03-023,
21.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Plane Stan Desultivitation (FGD)," Wire Sheet System (Fact Sheet (Plane Stan Desultivitation (FGD), Wire Pipe Type)," EPA-452(F-03-034,
21.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Clauned Type)," EPA-452(F-03-034,
45.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Clauned Type)," EPA-452(F-03-034,
45.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Clauned Type)," EPA-452(F-03-034,
45.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Clauned Type)," EPA-452(F-03-034,
45.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Clauned Type)," EPA-452(F-03-025,
45.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Clauned Type)," EPA-452(F-03-025,
45.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Clauned Type)," EPA-452(F-03-025,
45.5. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-)at Claun

Table 23-17. VOC Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent

Process	Polluta
Rolling Mill &	
Cooling Beds &	VOC
Spooler	

		Control Technology	Thermal Oxidation ¹	Catalytic Oxidation ²	Carbon Adsorption ³	Biofiltration ⁴	Condenser ⁵	Good Operating Practices
	IDENTIFY AIR	Control Technology Description	Utilizes an open flame or combustion within an enclosed chamber to oxidize pollutants. Thermal Oxidation has been a proven technology in controlling Volatile Organic Compounds (VOC) emissions from processes with high VOC usage (i.e., painting, polymer manufacturing, cleaning, etc.) but not the emission sources from a steel mill routed to the Caster Vent.	Catalytic oxidation allows oxidation to take place at a faster rate and at a lower temperature than is possible with thermal oxidation. VOC emissions can be controlled via catalytic oxidation. The oxidation is facilitated by the presence of the catalyst and carried out by the same basic chemical reaction as thermal oxidation.	Carbon Adsorption utilizes a highly porous solid with a large surface area to selectively adsorb VOC. Adsorption collects VOC on the surface of the porous solid instead of destroying the compound through a chemical reaction. The most common porous solid used in activated carbon which is a relatively low cost adsorbent. The adsorption capacity is affected by factors such as organic compound concentration in exhaust, temperature, and humidity.	Biofiltration utilizes a bed of microorganisms to decompose biodegradable organic compounds. This technology has been successfully applied in full-scale applications to control VOC from a range of industrial and public- sector sources. Biofiltration also requires large land areas to house the microorganisms. The land required is proportional to the amount of exhaust gas that needs to be treated. Particulate matter in the exhaust stream can clog the biofilter.	Condensers convert gas or vapors into liquids through condensation. This allows VOC within a exhaust stream to be recovered before the stream is exhausted to the atmosphere. Condensers typically use water or air to cool and condense the vapor stream. Condensers are designed for a specified throughput of fluid and cannot deviate sustainably from its designed capacity.	Good Operating Practices for the emission sources from a steel mill routed to the Caster Vent includes good combustion practices and the use of natural gas in the auxiliary heaters. Operation of the auxiliary heaters at the appropriate oxygen range and temperature promotes complete combustion.
Step 1.	POLLUTION CONTROL TECHNOLOGIES	Other Considerations	Thermal Oxidization of VOC occurs at temperatures between 1,100 °F and 1,200 °F. Below this temperature range the rate of oxidation of VOC drops significantly and the effective control of VOC is no longer feasible.	Several noble metal-enriched catalysts at high temperatures promote this reaction. Prior to entering the catalyst bed where the oxidation reaction occurs, the temperature of the exhaust gas must be between 400 °F to 800 °F. Below this temperature range, the reaction rate drops sharply and effective oxidation of VOC is no longer feasible. Above this temperature, conventional oxidation catalysts break down and are unable to perform their desired functions.	Carbon adsorption streams are designed for specific inlet concentrations of VOC. For example, if a carbon adsorption system was designed for streams with greater than 1,000 parts per million (PPM) of VOC it may not operate effectively below this concentration. The ideal temperature range for physical adsorption is 130 °F. Above this temperature the adsorption capacity of the adsorbent decreases. Particulates in the exhaust stream can clog the porous material decreasing the lifespan of the process.	The optimum temperature range of biofiltration is approximately 100 °F in order to keep a viable population of microorganisms. Biofilters are also limited to organic compound concentrations of approximately 1,000 ppm or less. Biofilters are best suited to steady- state processes that do not have significant outages; the microorganisms tend to die off during extended process downtimes that tend to result in changes to the temperature, humidity, or nutrient levels in their habitat.	as a result high VOC removal rates are not possible unless the VOC condenses at high temperatures. Particulates in the exhaust stream can cause	None.
		RBLC Database Information	Not included in RBLC for the control of VOC from the emission sources associated with a steel rolling mill	Not included in RBLC for the control of VOC from the emission sources associated with a steel rolling mill	Not included in RBLC for the control of VOC from the emission sources associated with a steel rolling mill	Not included in RBLC for the control of VOC from the emission sources associated with a steel rolling mill	Not included in RBLC for the control of VOC from the emission sources associated with a steel rolling mill	Included in the RBLC database as a form of control for VOC from the emission sources associated with a steel rolling mill.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	Thermal Oxidization of emissions for VOC destruction would require raising the exhaust gas temperature to at least a temperature of 1,100 °F. Below this temperature of 1,100 °F. Below this temperature the reaction rate drops significantly and the oxidation of VOC is no longer feasible. Since the exhaust temperature of the rolling mill is below the typical operating range of thermal oxidizers, large amounts of auxiliary fuel would be required to heat the stream to the required temperature for thermal oxidation. This will create additional combustion emissions. The high temperatures involved in thermal oxidation will also result in additional INO _x emissions. This control technology has not been demonstrated in practice for control of VOC emissions from the emission sources located at a steel rolling mill, thermal oxidation of VOC emissions from the emission sources from the rolling mill.	Catalytic oxidization of emissions for VOC destruction would require raising the exhaust gas temperature to at least a temperature of 00 °F. Below this temperature the reaction rate drops significantly and the oxidation of VOC is no longer feasible. Since the exhaust temperature of the rolling mill is below the typical operating range of catalytic oxidizers, additional auxiliary fuel would be required to heat the stream to the required temperature for catalytic oxidation. This will create additional combustion emissions. This control technology has not been demonstrated in practice for control of VOC emissions from the emission sources located at a steel rolling mill. As a result, catalytic oxidation of VOC emissions is considered infeasible for the control of VOC emissions from the rolling mill.	by potentially increasing the amount of solid waste disposal. The low VOC concentrations of the exhaust stream would make efficient operation of Carbon Adsorption infeasible. This control technology has not	Biofiltration would create adverse environmental impacts by potentially increasing the amount of solid waste disposal. The low VOC concentrations of the exhaust stream would make efficient operation of Biofiltration infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the emission sources located at a steel rolling mill. As a result, Biofiltration is considered infeasible for the control of VOC emissions from the rolling mill.		Technically feasible. Good combustion practices and the use of pipeline quality natural gas has been widely selected as BACT for VOC control from the rolling mill.

Table 23-17. VOC Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent

Process	Pollutant
Rolling Mill &	
Cooling Beds &	VOC
Spooler	

Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency			Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)			Base Case
Step 5.	SELECT	BACT ⁶			0.01 lb/hr per source (excluding Bit Furnace) using Good Operating Practices

¹ U.S. EPA. Office of Air Quality Planning and Standards. "Air Pollution Control Technoloov Pact Sheet (Recenerative Incinerator)." EPA-452/F-03-021. U.S. EPA. Office of Air Quality Planning and Standards. "Draft CAM Technology Fact Sheet (Cotablet Incinerator)." EPA-452/F-03-021. U.S. EPA. Office of Air Quality Planning and Standards. "Draft CAM Technology Fact Sheet (Cotablet Incinerator)." EPA-452/F-03-021. U.S. EPA. Office of Air Quality Planning and Standards. "Draft CAM Technology Fact Sheet (Cotablet Incinerator)." EPA-452/F-03-021. U.S. EPA. Office of Air Quality Planning and Standards. "Draft CAM Technology Fact Sheet (Cotablet Incinerator)." EPA-452/F-03-018
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Lang Bioreactors to Control Air Pollution" EPA-452/F-03-018
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-018
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-018
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-018
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-018
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office of Air Quality Planning and Standards, "Refingerated Condenses" EPA-452/F-03-028
¹ U.S. EPA. Office

23.7 Storage Silos

Emission Units included under Storage Silos are listed below:

- Two Fluxing Agent Storage Silos (FLXSLO1)
- Fluxing Agent Transfer Hopper at Silo Loadout (FLXHOPPER)
- One Carbon Storage Silo (CARBSLO1)
- Carbon Unloading Hopper (CARBHOPPER)
- One EAF Baghouse Dust Silo (DUSTSLO1)

The materials stored in these silos will be used in the steelmaking process or collected from the meltshop baghouse. When the material is loaded into the silo, fine particles in the displaced air will be forced out of the silo contributing to PM_{2.5}, PM₁₀, and PM emissions. The particulate emissions generated by material loading of the silos will be routed through bin vents. Table 23-18 below contains the selected BACT controls and emission limits for PM emissions emitted by storage silos and Table 23-19 provides the top-down BACT analysis for PM emissions.

Table 23-18. Summary of Selected BACT for Storage Silos

Pollutant	Selected BACT Control	Selected BACT Limit
PM/PM _{2.5} /PM ₁₀	Bin Vent	0.005 gr/dscf (PM Filterable)

Table 23-19. PM Top-Down BACT Analysis for Storage Silos Process Pollutant

 Process
 Pollutant

 Storage
 PM/PM₁₀/PM_{2.5}

		Control	Electrostatic	Inertial Collection Systems		
	Step	Technology	Precipitator (ESP) ^{1,2}	(Cvclones) ³	Wet Scrubber ⁴	Bin Vent/Fabric Filter⁵
Stor 1	IDENTIFY AIR	Control Technology Description	An ESP uses electrical forces to move particles entrained within a exhaust stream onto a collection surfaces (i.e., an electrode). ESPs have been used on solid fuel	Consists of one or more conically shaped vessels in which the exhaust gas stream follows a circular motion prior to the outlet. PM enters the cyclone suspended in the gas stream, which is forced into a vortex by the shape of the cyclone. The inertia of the PM resists the directional change of the gas, resulting in an outward movement under the influence of centrifugal forces until they strike the cyclone wall. The PM is caught in a thin laminar layer of air next to the cyclone wall and is carried downward by gravity to the collection hopper.	Wet Scrubbers remove particulates through the impact of particles with water droplets. Wet Scrubbers can have high removal efficiency for streams with a steady state exhaust. The scrubber operates with a high pressure drop to maintain high removal efficiency.	When material is loaded into a silo the displaced air is emitted to the atmosphere. The air can contain fine dust particles that contribute to PM emissions.
Step 1.	POLLUTION CONTROL TECHNOLOGIES	Other Considerations	Rappers or other mechanical mechanisms are used periodically to impart a vibration or shock to dislodge the deposited PM on dry ESP electrodes. The dislodged PM is collected in hoppers. In wet ESP, the collected particles are washed off of the collection plates by a small flow of trickling water.	In some cases, thermal insulation is used to reduce heat loss and cold air from entering the system. Cold air can cause gas quenching and condensation which leads to corrosion, dust buildup, and plugging of the hopper or dust removal system.	Wet scrubbing uses a significant amount of water and produces a wastewater stream that must be properly disposed.	Bin Vent dust collectors are specifically designed to capture PM emissions from the top of a storage silo for loading and unloading operations.
		RBLC Database Information	Not included in RBLC for the control of particulate emissions from Storage Silos.	Not included in RBLC for the control of particulate emissions from Storage Silos.		Bin Vents/Fabric Filters are included in the RBLC as a common form of control for particulate emissions from Storage Silos.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	employs a bin vent for control of PM, PM ₁₀ and PM _{2.5} emissions. Additional particulate removal is not practical. This control technology has not been used in	PM , PM_{10} and $PM_{2.5}$ emissions. Additional particulate removal is not practical. This control technology has not been used in practice for control of PM emissions from the Storage Silos. As a result, a Cyclone is considered infeasible for the	for control of PM, PM_{10} and $PM_{2.5}$ emissions. Additional particulate removal is not practical. This control technology	Technically feasible. The proposed control train employs a Bin Vent and Bin Vents are widely demonstrated in practice.

Table 23-19. PM Top-Down BACT Analysis for Storage Silos

Process	Pollutant
Storage Silos	PM/PM ₁₀ /PM _{2.5}

	Step	Control Technology	Electrostatic Precipitator (ESP) ^{1,2}	Inertial Collection Systems (Cyclones) ³	Wet Scrubber ⁴	Bin Vent/Fa	bric Filter⁵
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency				Base	Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)				Base	Case
						Facility	PM Emission Limit (gr/dscf)
						Comparable	Facilities ^{6,7}
						Gerdau Ameristeel, NC	-
						CMC Mesa, AZ	-
Chan E	051.507					Nucor Frostproof, FL	0.005
Step 5.	SELECT	BACT				CMC Durant, OK	0.01
						Nucor Sedalia, MO	0.01
						Nucor Brandenburg, KY	0.001
						Proposed BACT:	0.005 gr/dscf for filterable PM produced using a Bin Vent.

¹ U.S. EPA. Office of Air Ouality Planning and Standards, "Air Pollution Control Technoloov Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Piee Twoe)," EPA-452/F-03-029,
 ² U.S. EPA. Office of Air Ouality Planning and Standards, "Air Pollution Control Technoloov Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Plate Twoe)," EPA-452/F-03-030,
 ³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Plate Twoe)," EPA-452/F-03-030,
 ³ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurziation (FGD) - Wet, Sorav Drv. and Drv Scrubbers)," EPA-452/F-03-034,
 ⁵ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025,
 ⁶ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

⁷ Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill). The proposed 0.005 gr/dscf from the Nucor Frostproof facility is more conservative than the 0.01 gr/dscf emission limit for PM and as a result it is not feasible as a BACT limit.

23.8 Storage Piles & Material Transfer

Emission Units included under Storage Piles and Material Transfer are listed below:

- Five Scrap Storage Piles (EAF1P)
- One Alloy Aggregate Storage Pile (AAP1)
- One Slag Storage Pile (SP1)
- Piles associated with the Slag Processing Plant (SPP1), which consist of seven smaller piles:
 - SPP A-Scrap Pile;
 - SPP B-Scrap Pile;
 - SPP C-Scrap Pile;
 - SPP No. 1 Products Pile;
 - SPP No. 2 Products Pile;
 - SPP No. 3 Products Pile; and
 - SPP Overs Pile.
- One Residual Scrap Storage Pile (RSP1)
- One Mill Scale Pile (MSP1)
- Various material transfer points (DPEAF1, DPSLC1, DPF1, DPAA1, DPRW1, DPS1, DPRS1, and DPMS1)

The material transfer points include both indoor and outdoor transfer where materials are moved from equipment to equipment by being dropped. Particulate matter emissions will be generated due to wind erosion at the piles or wind activity around the material transfer points. Table 23-20 contains the selected BACT controls and emission limits for pollutants emitted by storage piles and material transfers and Table 23-21 provides the top-down BACT analysis for PM emissions.

Table 23-20. Summary of Selected BACT for Storage Piles

Pollutant	Selected BACT Control	Selected BACT Limit
PM/PM _{2.5} /PM ₁₀	Work Practices (Enclosures, Wetting/Watering as needed ^{1, 2} , Minimizing Drop Heights for Drop Points)	-

¹ Note that moisture should not be introduced to the scrap being processed at the proposed Project due to safety considerations. Specifically wet scrap will cause violent explosions in the EAF when electricity from the melting electrodes is introduced, as documented by many catastrophic explosion event logs, videos, etc.

² CMC proposes to apply wetting/watering, as needed, pursuant to other environmental conditions. For example, no wetting/watering will be applied during rain event, when there is sufficient moisture on the piles following a rain/snow event, etc.

Table 23-21. Top-Down BACT Analysis for Storage Piles & Material Transfers - PM/PM₁₀/PM_{2.5}

Process	Pollutant
Storage Piles & Material Transfers	PM/PM ₁₀ /PM _{2.5}

	Step	Control Technology	Enclosures	Wetting/Watering
		Control Technology Description	Enclosure or covering of inactive piles can be utilized to minimize wind erosion and therefore reduce emissions. Partial enclosures include wind fences or barriers that reduce windblown dust from storage piles or large exposed areas. The wind fence or barrier creates an area of reduced wind velocity and emissions.	As a supplement to natural precipitation, when needed, wetting/watering - the spraying storage piles with water or chemical agents such as surfactants - can be used to reduce wind erosion emissions. Water sprays are known to have a more temporary effect on total emissions while chemical agents offer a more extensive wetting and therefore more effect control of emissions.
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Other Considerations	No other considerations.	Wetting/watering should not be applied to the EAF Feedstock, Alloy Aggregate or Residual Scrap storage piles, as these storage piles include feed material for the EAF and water will violently react with molten steel in the EAF. Additionally, wetting/watering should not be used on storage piles where it may result in unacceptable solidification of slag or other materials discharged from high-temperature operations.
Step 2.	ELIMINATE	RBLC Database Information	Included in RBLC. Enclosures such as wind breaks are used as a form of control for particulate emissions from storage piles.	Included in RBLC. Water sprays are included in the RBLC as a common form of control for particulate emissions from storage piles.
	TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically feasible. Enclosures can be used, as practicable, to reduce wind- erosion PM emissions.	Wetting/watering is feasible as a supplement to natural precipitation for controlling wind erosion PM emissions except where it would create safety hazards or unacceptable changes in material properties.

orage ter re olied ate he

it ation h

form rom

Table 23-21. Top-Down BACT Analysis for Storage Piles & Material Transfers - PM/PM₁₀/PM_{2.5}

Process	Pollutant	
Storage		
Piles &	DM/DM /DM	
Material	PM/PM ₁₀ /PM _{2.5}	
Transfers		

	Step	Control Technology	Enclosures	Wetting/Watering
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency ^{1,2}	85% for partial enclosures	80-90%
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)	Base Case	Base Case
			Facility	Control Technology
			Comparable	Facilities ^{3,4,5}
			Nucor Steel Frostproof, FL	Enclosures, Wetting/Watering, Minimizing Drop Height
			Nucor Steel Sedalia, MO	Wetting/Watering, Minimizing Drop Height
			Gerdau Ameristeel Charlotte, NC	None
Step 5.	SELECT BACT		CMC Steel Oklahoma City, OK	Enclosures, Wetting/Watering, Minimizing Drop Height
			CMC Steel Mesa, AZ	Enclosures, Wetting/Watering, Material Moisture Content
			PROPOSED BACT:	Work Practices: As applicable, Enclosures and Wetting/Watering Additionally, the drop heights associated with the Drop Points f the piles will be minimized to the extent practicable.

 Partial enclosure control efficiency per Table 7 of TCEQ Technical Guidance for Rock Crushing Plants.
 Wetting/watering control efficiency per AP-42 Chapter 11.19.1 Sand and Gravel Processing (11/95). https://www3.epa.gov/ttn/chief/ap42/ch11/final/c11s19-1.pdf, Accessed March 2020.

³ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

⁴ CMC Steel notes that watering may result in unacceptable solidification of slag or other materials discharged from high-temperature operations and that most of the materials in the outdoor piles are scrap steel which have very little brittle materials that are susceptible to becoming fugitive dust.

23.9 Diesel-Fired Engines Associated with Emergency Generators

The proposed Project will utilize two diesel-fired engines associated with emergency generators and fire pumps. The emergency generator (EGEN1) will be powered by a 1,600 hp engine and the emergency fire water pump (EFWP1) will be powered by a 300 hp engine. Table 23-22 provides a summary of the selected BACT controls and limits and Table 23-23 to Table 23-28 contain the top-down BACT analyses for the two engines.

Pollutant	Selected BACT Control	Selected BACT Limit
СО	Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII	As specified in 40 CFR 60, Subpart IIII
NOx	Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII	As specified in 40 CFR 60, Subpart IIII
SO ₂	Ultra-low sulfur diesel fuel	Fuel composition of ≤0.0015% sulfur by weight
PM/PM _{2.5} /PM ₁₀	Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII	As specified in 40 CFR 60, Subpart IIII
GHG as measured in CO ₂ e	Good Combustion Practices	108.8 tpy

Table 23-22. Summary of Selected BACT for Emergency Engines

Table 23-23. CO Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	СО

		Control Technology		Tier Certification
Step 1.	IDENTIFY AIR		Part 60 Subpart IIII for s	Tier Emission Standards as outlined in 40 CFR stationary CI internal combustion emergency pump engines, per the maximum engine
		Other Considerations	No other considerations.	
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	RBLC Database Information Feasibility Discussion	Included in the RBLC database as an emission standard. Technically feasible. Using an EPA Tier certified engine has been demonstrated in practice for emergency engines.	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency	Base Case	
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)	In its 2010 Maximum Achievable Control Technology (MACT)/Generall Available Control Technology (GACT) evaluation for Reciprocating Internal Combustion Engines (RICE), EPA concluded for emergency RICE: "Because these engines are typically used only a few number of hours per year, the costs of emission control are not warranted when compared to the emission reductions that would be achieved." ¹ Based on EPA's assessment and the fact that the RBLC contains no records of DOC installation on emergency-use RICE, DOC is eliminated from consideration as BACT. This conclusion is substantiated by multiple state and local regulatory authorities, including the San Joaquin Valley Air Pollution Control District (APCD) (see Guideline 3.1.1. and Guidelin 3.1.4 at the San Joaquin Valley Unified APCD BACT Clearinghouse).	
	Step 5. SELECT BACT		Specifications	CO Emission Standard
Sten 5			Аррі	licable Emission Standards
элер э.			PROPOSED BACT:	Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII.

¹ U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-24. NOx Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	NO _X

		Control Technology	Tier Certification
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology	Certified to comply with Tier Emission Standards as outlined in 40 CFR Part 60 Subpart IIII for stationary CI internal combustion emergency engine or stationary fire pump engines, per the maximum engine power and model year.
		Other Considerations	No other considerations.
Step 2.	ELIMINATE TECHNICALLY	RBLC Database Information	Included in the RBLC database as an emission standard.
	INFEASIBLE OPTIONS	Feasibility Discussion	Technically feasible. Using an EPA Tier certified engine has been demonstrated in practice for emergency engines.

Table 23-24. NOx Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	NO _X

Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency	Base Case	
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)	In its 2010 Maximum Achievable Control Technology (MACT)/Generally Available Control Technology (GACT) evaluation for Reciprocating Internal Combustion Engines (RICE), EPA concluded for emergency RICE: "Because these engines are typically used only a few number of hours per year, the costs of emission control are not warranted when compared to the emission reductions that would be achieved." ¹ Based on EPA's assessment and the fact that the RBLC contains no records o DOC installation on emergency-use RICE, DOC is eliminated from consideration as BACT. This conclusion is substantiated by multiple state and local regulatory authorities, including the San Joaquin Valley Air Pollution Control District (APCD) (see Guideline 3.1.1. and Guideline 3.1.4 at the San Joaquin Valley Unified APCD BACT Clearinghouse).	
			Specifications	NO _x Emission Standard
	Step 5. SELECT BACT		Appl	licable Emission Standards
Step 5.			PROPOSED BACT:	Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII.

¹ U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-25. SO2 Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	SO ₂

		Control Technology	Ultra-Lo	ow Sulfur Diesel
Step 1.	Step 1. IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES		-	SD) contains less than 0.0015% uced sulfur content reduces the ns.
		Other Considerations	No other considerations.	
Stor 2	Step 2. ELIMINATE RBLC INFEASIBLE End of the second		Included in the RBLC data control for SO ₂ from eme	abase as a common form of rgency, diesel-fired RICE.
Step 2.			Technically feasible. The use of ULSD has been demonstrated in practice.	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency	E	Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS CONTROLS		E	Base Case
			Specifications	SO ₂ Emission Standard
Step 5.	SELEC	ГВАСТ	Applicable	Emission Standards
			PROPOSED BACT:	Ultra-low sulfur diesel fuel.

Table 23-26. PM Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	PM/PM ₁₀ /PM _{2.5}

		Control Technology	Ultra-Low Sulfur Diesel	Diesel Particulate Filter ¹	Tier Certification
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology Description	reduced sulfur content reduces the potential for aggregation of sulfur containing compounds and thus reduces PM2.5	A diesel particulate filter (DPF) is placed in the exhaust pathway to prevent the release of PM. A DPF uses a porous ceramic or cordierite substrate or metallic filter to physically trap particulate matter and remove it from the exhaust stream.	Certified to comply with Tier Emission Standards as outlined in 40 CFR Part 60 Subpart IIII for stationary CI internal combustion emergency engine or stationary fire pump engines, per the maximum engine power and model year.
		Other Considerations	No other considerations.	No other considerations.	No other considerations.
Step 2. TE	ELIMINATE TECHNICALLY INFEASIBLE	RBLC	common form of control for PM from	Not included in the RBLC database as a control technology for emergency, diesel-fired RICE. DPF is nonetheless carried forward in this BACT analysis.	Included in the RBLC database as an emission standard.
OPTIONS		Feasibility Discussion	Technically feasible. The use of ULSD has been demonstrated in practice.	Technically feasible. The use of DPF has been demonstrated in practice for engines.	Technically feasible. Using an EPA Tier certified engine has been demonstrated in practice for emergency engines.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency	Base Case	85-90%	Base Case

Table 23-26. PM Top-Down BACT Analysis for Emergency Engines

Process	Pollutant					
Emergency Engines	PM/PM ₁₀ /PM _{2.5}					
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)	In its 2010 Maximum Achievable Control Tec Technology (GACT) evaluation for Reciproc EPA concluded for emergency RICE: "Becar few number of hours per year, the costs of compared to the emission reductions that assessment and the fact that the RBLC or emergency-use RICE, DOC is eliminated from substantiated by multiple state and local Joaquin Valley Air Pollution Control District 3.1.4 at the San Joaquin Valley Ur	ating Internal Combustion Engines (RICE), use these engines are typically used only a f emission control are not warranted when at would be achieved. ⁷ 2 Based on EPA's ontains no records of DOC installation on m consideration as BACT. This conclusion is regulatory authorities, including the San (APCD) (see Guideline 3.1.1. and Guideline		Base Case
					Specifications	PM Emission Standard
					Applicable	Emission Standards
Step 5.	SELEC				PROPOSED BACT:	Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII.

² U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-27. VOC Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	VOC

		Control Technology	Tier Certification
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology	Certified to comply with Tier Emission Standards as outlined in 40 CFR Part 60 Subpart IIII for stationary CI internal combustion emergency engine or stationary fire pump engines, per the maximum engine power and model year.
			No other considerations.
		Considerations	
		RBLC	Included in the RBLC database as an emission standard.
	ELIMINATE	Database	
Step 2.	TECHNICALLY	Information	
5tep 2.	INFEASIBLE OPTIONS	Feasibility Discussion	Technically feasible. Using an EPA Tier certified engine has been demonstrated in practice for emergency engines.

Table 23-27. VOC Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	VOC

Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency	Base Case		
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)	In its 2010 Maximum Achievable Control Technology (MACT)/Generally Available Control Technology (GACT) evaluation for Reciprocating Internal Combustion Engines (RICE), EPA concluded for emergency RICE: "Because these engines are typically used only a few number of hours per year, the costs of emission control are not warranted when compared to the emission reductions that would be achieved." ¹ Based on EPA's assessment and the fact that the RBLC contains no records of DOC installation on emergency-use RICE, DOC is eliminated from consideration as BACT. This conclusion is substantiated by multiple state and local regulatory authorities, including the San Joaquin Valley Air Pollution Control District (APCD) (see Guideline 3.1.1. and Guideline 3.1.4 at the San Joaquin Valley Unified APCD BACT Clearinghouse).		
			Specifications	VOC Emission Standard	
				Applicable Emission Standards	
Step 5.	Step 5. SELECT BACT		PROPOSED BACT:	Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII.	

¹ U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-28. GHG Top-Down BACT Analysis for Emergency Engines

Process	Pollutant
Emergency Engines	GHGs as measured in CO_2e

		Control Technology	Good Combu	stion Practices
Step 1.		Control Technology Description	Operation of the engines at high products of incomplete combustic	combustion efficiency to reduce the on.
	TECHNOLOGIES		No other considerations	
	ELIMINATE	Considerations RBLC Database Information	Included in the RBLC database as GHGs from emergency, diesel-fire	
Step 2.	TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically feasible. Good combu selected as BACT for GHG control	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency	Base Case	
Step 4.	EVALUATE AND DOCUMENT Cost <i>tep 4.</i> MOST Effectiveness EFFECTIVE (\$/ton) CONTROLS		Base	e Case
			Specifications	GHG BACT Nork Practices
Step 5. SELECT		BACT	PROPOSED BACT:	91.65 tpy of GHG (CO ₂ e) using Good combustion practices.

23.10 Cooling Towers

Emission Units under Cooling Towers are listed below:

- One Contact Cooling Tower (CTC1)
- Two Non-Contact Cooling Towers (CTNC11, CTNC12)

Each of the cooling towers have two individual cells. Cooling towers have the potential to emit PM_{2.5}, PM₁₀, and PM emissions. The contact cooling towers will provide direct contact between cooling water and air passing through the tower. Some of the liquid will become entrained in the air stream and will be carried out of the tower as drift droplets. These droplets will contain either dissolved or suspended solid particles that contribute to particulate emissions. Table 23-29 below provides a summary of the selected BACT controls and limits for cooling towers and Table 23-30 contains the top down BACT analysis for PM emissions.

Table 23-29. Summary of Selected BACT for Cooling Towers

Pollutant	Selected BACT Control	Selected BACT Limit
PM/PM _{2.5} /PM ₁₀	High Efficiency Drift Eliminators	0.001% Drift Loss

Table 23-30. PM Top-Down BACT Analysis for Non-Contact Cooling Towers Process Pollutant

Non-Contact Cooling Towers PM/PM₁₀/PM_{2.5}

	Step	Control	Dry Cooling Towers ¹	Limitations on TDS Concentrations in the	Drift Eliminators ²
	Step	Technology	Dry Cooling Towers	Circulating Water ²	Drift Eliminators
Step 1.	IDENTIFY AIR POLLUTION CONTROL	Control Technology Description	Unlike traditional wet cooling towers, dry cooling towers operate by heat transmission through tubes or fins that separate the cooling water from ambient air. Dry cooling towers rely on convection to dissipate heat from the cooling water rather than evaporation. Since there is no contact between the cooling water and outside air, there is no drift loss and thus zero emissions. However, performance of dry cooling towers is limited by the ambient dry-bulb temperature.	The total dissolved solids (TDS) in the circulating water can be limited to lower the amount of dissolved salts entrained in the air stream before exiting the tower. This results in lower particulate emissions because less salts can precipitate from the "drift" droplets.	Wet cooling towers provide direct contact between the cooling water and air passing through the tower. Some of the liquid water may become entrained in the air stream and carried out of the tower as "drift" droplets. The TDS in the water contributes to particulate emissions. To reduce these particulate emissions drift eliminators are usually incorporated into the tower design to remove water droplets in the air stream. This is accomplished through inertial separation caused by directional changes in the fluid while passing through the eliminator.
	TECHNOLOGIES	Other Considerations	None	In order to reduce TDS higher volumetric flow rates of make- up water must be introduced into the tower.	The use of high-efficiency drift eliminating media to de-entrain particulate droplets from the air flow exiting the cooling tower is commercially proven technique to reduce PM/PM ₁₀ /PM _{2.5} emissions. Compared to "conventional" drift eliminators, high-efficiency drift eliminators can reduce the PM/PM ₁₀ /PM _{2.5} emission rate by more than 90 % with a drift loss as low as 0.0005%.
		RBLC Database Information	Not included in RBLC for the control of particulate emissions from cooling towers.	Not included in RBLC for the control of particulate emissions from cooling towers for a similar facility (i.e., Micro mill and ECS process).	Drift Eliminators are included in the RBLC as a common form of control for particulate emissions from cooling towers.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically infeasible. Dry Cooling Towers have not been demonstrated for use at steel micro-mills.	The TDS content of the make up water is dependent on fluctuations in the water supply. Additionally, this control technology has not been demonstrated in practice, for a facility with similar technology (i.e., an ECS and Micro Mill Process), for control of PM emissions from cooling towers. As a result, limitations on TDS concentrations in circulating water is considered infeasible for the control of PM emissions from cooling towers.	Technically feasible. The proposed cooling towers employ high efficiency drift eliminators and high efficiency drift eliminators are widely demonstrated in practice.
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency			Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)			Base Case

Table 23-30. PM Top-Down BACT Analysis for Non-Contact Cooling Towers

Process	Pollutant					
Non-Contact Cooling Towers	PM/PM ₁₀ /PM _{2.5}					
	Step	Control Technology	Dry Cooling Towers ¹	Limitations on TDS Concentrations in the Circulating Water ²	Drift Elimi	inators ²
					Facility	Drift Loss (%)
					Comparable F	Facilities ^{3, 4}
					CMC Mesa, AZ	0.0005
					Nucor Frostproof, FL	0.0010
					CMC Durant, OK	0.0010
Step 5.	SELECT BACT				Nucor Sedalia, MO	0.0010 2,500 TDS
					Proposed BACT:	0.001% drift loss using a high-efficiency drift eliminators.

¹ California Energy Commission, "Comparison of Alternate Cooling Technologies for California Power Plants Economic, Environmental and Other Tradeoffs", EPA 500-02-079F.

² U.S. EPA, AP-42 Section 13.4, "Wet Cooling Towers", January 1995.
 ³ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

⁴ Only the Nucor Frostproof, Nucor Sedalia, CMC Durant, and CMC Mesa facilities utilize a similar process (i.e., ECS Process and Micro Mill). The 0.001% drift loss is consistent with Nucor Frostproof, Nucor Sedalia, and CMC Durant. The CMC Mesa operations are located in a PM10 non-atttainment area and the 0.0005% drift loss is reflective of PM10 requirements in that non-attainment area which are not applicable to the proposed Project attainment areas.

23.11 Ball Drop Crushing

Ball drop crushing (CR1) is used to reduce the size of large pieces of scrap (also known as "reclaim" or "skulls", from the process). The proposed ball drop crushing of large scrap has the potential to emit PM, PM₁₀, PM_{2.5} as fine particulates will rise into the air as the scrap is being crushed. Table 23-31 below provides a summary of the selected BACT controls for ball drop crushing and Table 23-32 contains the top down BACT analysis for PM emissions.

Pollutant	Selected BACT Control	Selected BACT Limit
PM/PM _{2.5} /PM ₁₀	Work Practices: Wetting/Watering, Material Moisture Content, Good Process Operations	-

Table 23-32. Top-Down BACT Analysis for Ball Drop Crushing

Process	Pollutant
Ball Drop Crushing	PM, PM ₁₀ , PM _{2.5}

		Control Technology	Baghouse/Fabric Filter ¹	Cyclone ²	Enclosures ^{3,4}	Wetting/Watering/Material Moisture Content ^{3,4}	Good Process Operations
Step 1.	IDENTIFY AIR POLLUTION CONTROL	Control Technology Description	passed through a tightly woven or felted fabric arranged in sheets, cartridges, or bags that collect PM via sieving and other	stream toward the cyclone walls as the waste gas flows through the conical unit. The captured particles are collected in a material hopper below the unit.	utilized to minimize wind erosion and therefore reduce emissions. Partial enclosures include wind fences or barriers that reduce	materials may limit the generation and	Operate and maintain the equipment in accordance with good air pollution control practices
	TECHNOLOGIES		must be selected for specific process	Cyclones typically exhibit lower efficiencies when collecting smaller particles. High- efficiency units may require substantial pressure drop.	No other considerations.	No other considerations.	No other considerations.
		RBLC Database Information				Included in RBLC for the control of PM emissions from ball drop crushing.	Included in RBLC for the control of PM emissions from ball drop crushing.
Step 2.	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	nature and equipment is moved within the slag handling area to meet processing	nature and equipment is moved within the			Feasible. Good Process Operations are widely demonstrated in practice
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency				70%	Base Case
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness ⁸ (\$/ton)				Base Case	Base Case
						Facility	Control Technology Used
						Comparabl	
						Nucor Frostproof, FL	Equipment Enclosures, Watering, Minimizing Wind Erosion and Drop Points
Step 5.	SELEC	ГВАСТ				Nucor Sedalia, MO	Dust Suppressant Emission Control System, Minimize Drop Heights
			logy Fact Sheet (Fabric Filter - Pulse-1et Cleaned Type)." F			Proposed BACT:	Work Practices: Wetting/Watering, Material Moisture Content, Good Process Operations

¹ U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.
 ² U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Cyclone)," EPA-452/F-03-005.
 ³ Ohio EPA, "Reasonably Available Control Measures for Fugitive Dust Sources," Section 2.1 - General Fugitive Dust Sources.
 ⁴ Texas Commission on Environmental Quality, "Technical Guidance for Rock Crushing Plants", Draft RG058.
 ⁵ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

23.12 Roads

As part of the chosen BACT control, where practicable, roads (PR1) will be paved to reduce emissions of PM. Resurfacing is impracticable in two specific scenarios: in areas of road utilized by the slag haul truck and in areas of road where vehicle traffic takes place near accumulated piles. The slag haul truck's chains, which are necessary to prevent its tires from melting in the meltshop, would destroy pavement as well as pulverize and disperse gravel or recycled asphalt, rendering its use impracticable. Additionally, while vehicle traffic is necessary in areas where piles accumulate, resurfacing is impracticable due to the accumulation of dust and other materials. Unpaved roads (UR1) associated with such scenarios will have an engineered surface in place of pavement, gravel, or recycled asphalt. Sweeping dust from roads and mimicking precipitation by spraying roads with water or surfactants can aid in reducing particulate emissions. Vehicle restrictions may also be used to restrict vehicle weight, vehicle speed, and number of vehicles on the road to reduce particulate emissions from vehicle traffic. Table 23-33 provides a summary of the selected BACT controls and limits for roads and Table 23-34 contains the top down BACT analysis.

Pollutant	Selected BACT Control	Selected BACT Limit
PM/PM _{2.5} /PM ₁₀	Work Practices (Fugitive Dust Control Plan including, as practicable: Vacuuming/Sweeping, Vehicle Restrictions, and/or Wetting/Watering)	-

Table 23-33. Summary of Selected BACT for Roads

Table 23-34. PM Top-Down BACT Analysis for Roads

Process	Pollutant
Roads	PM/PM ₁₀ /PM _{2.5}

	Step		Vacuuming/Sweeping ¹	Vehicle Restrictions ²	Resurfacing	Wetting/Watering
Step 1.	IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES	Control Technology Description	Vacuuming or sweeping dust from roads can reduce particulate emissions by collecting loose materials.	Vehicle restrictions include limiting vehicle speed, vehicle weight, or number of vehicles on the road to reduce emissions of particulate matter from roads due to vehicle traffic. Speed limits may vary, however 15 miles per hour is a conservative speed limit for reducing emissions.	Resurfacing the roads with pavement, gravel, recycled asphalt, or other suitable material to reduce emissions by reducing silt content.	As a supplement to natural precipitation, when needed, wetting/watering - spraying roads with water or chemical agents such as surfactants - can be used to reduce wind erosion emissions. Water sprays are known to have a more temporary effect on total emissions while chemical agents offer a more extensive wetting and therefore more effect control of emissions.
		Other Considerations	Vacuuming/sweeping is most effective on paved roads.	No other considerations.	No other considerations.	Wetting/watering is most effective on unpaved roads. Use of chemical surfactants on roads may have adverse effects on plant and animal life. ³
		Dalabase	Included in RBLC. Vacuuming and sweeping are included in the RBLC as common forms of control for particulate emissions from roads.	Included in RBLC. Setting speed limits is included in the RBLC as a common form of control for particulate emissions from roads.	Included in RBLC. Resurfacing is included in the RBLC as a common form of control for particulate emissions from roads.	Included in RBLC. Road watering is included in the RBLC as a common form of control for particulate emissions from roads.

Table 23-34. PM Top-Down BACT Analysis for Roads

Process	Pollutant
Roads	PM/PM ₁₀ /PM _{2.5}

SI	tep	Control Technology	Vacuuming/Sweeping ¹	Vehicle Restrictions ²	Resurfacing
Sten 2	ELIMINATE TECHNICALLY INFEASIBLE OPTIONS	Feasibility Discussion	Technically feasible. Vacuuming and/or sweeping can be used, as practicable, to reduce PM emissions.	Technically feasible. Speed limits can be used, as practicable, to reduce PM emissions.	Technically feasible. Resurfacing can be used, as practicable, to reduce PN emissions. Resurfacing is not practicable in two scenarios: (1) in areas of road utilize by the slag haul truck, and (2) in are of road where vehicle traffic takes place near accumulated piles. The sla haul truck has chains which are necessary to prevent the tires from melting in the meltshop, but which would also destroy pavement, and pulverize and disperse gravel or recycled asphalt. In areas where pile are accumulated, an allowance for vehicle traffic is necessary, but resurfacing is impracticable due to the accumulation of dust and other materials. Unpaved roads associated with such scenarios will have an engineered surface in place of pavement, gravel, or recycled asphal

	Wetting/Watering
can e PM	Wetting/watering is feasible as a supplement to natural precipitation for controlling wind erosion and vehicle traffic PM emissions.
wo ilized areas s e slag	
m :h d	
piles r	
o the	
ted	
ohalt.	

Table 23-34. PM Top-Down BACT Analysis for Roads

Process	Pollutant
Roads	PM/PM ₁₀ /PM _{2.5}

	Step	Control Technology	Vacuuming/Sweeping ¹	Vehicle Restrictions ²	Resurfacing	
Step 3.	RANK REMAINING CONTROL TECHNOLOGIES	Overall Control Efficiency ⁴	Highly Variable	Reduction of speed is linearly related to control of emissions.	~95%	
Step 4.	EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS	Cost Effectiveness (\$/ton)	Base Case	Base Case	Base Case	
		*	Facility		Control	
				Comparabl	Comparable Facilities ⁵	
			Nucor Steel Frostproof, FL		Fugitive Du	
			Nucor Steel	l Sedalia, MO	Fugitive Dust Control Plan, inclu Restrictions, and/	
Step 5.	Step 5. SELECT		CMC Steel Durant, OK		Paving, Sweeping, Vehic	
			CMC Steel Mesa, AZ		Watering/Wetting or Vacu	
			PROPOS	ED BACT:	Work Practices: Fugitive Dust Co Vacuuming/Sweeping, V Wetting	

¹ AP-42 Chapter 13.2.1 Paved Roads (10/02), https://www3.epa.gov/ttn/chief/old/ap42/ch13/s021/final/c13s02-1_2002.pdf.

² AP-42 Chapter 13.2.2 Unpaved Roads (9/98), https://www3.epa.gov/ttn/chief/old/ap42/ch13/s022/final/c13s02-2.pdf.

³ AP-42 Chapter 13.2 Fugitive Dust Sources (1/95), https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s02.pdf.
 ⁴ Wetting/watering control efficiency per AP-42 Chapter 11.19.1 Sand and Gravel Processing (11/95). https://www3.epa.gov/ttn/chief/ap42/ch11/final/c11s19-1.pdf, Accessed March 2020.

⁵ A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

	Wetting/Watering
	80-90%
	Base Case
ol Te	chnology
)ust	Control Plan
	ng Vacuuming/Sweeping, Vehicle Wetting/Watering
icle	Restrictions (Speed Limit)
cuur	ning or Vehicle Restrictions
, Ve	trol Plan including, as practicable, hicle Restrictions, and/or Vatering.

APPENDIX A. EMISSION CALCULATIONS DETAILS

		Material Throughput
Material	Hourly (ton/hr)	Annual (tpy)
Steel Production	117	650,000
Scrap	146	812,500
Slag	12	65,000

Table A-1a. Material Throughput

Table A-1b. Throughput - Baghouse Flowrate

Emission Unit ID	Emission Point ID	Description	Flow Rate (scfm) 30-day rolling ¹
EAF1	BH1	Meltshop Baghouse	679,000
LMS1		Picitariop Dagilouse	075,000

¹ At the time of application, project engineering was still in progress and the flowrate has not been finalized. The flowrate presented is the maximum anticipated and incorporates a conservative buffer.


The final equipment flowrate will be at or under this flowrate.

Table A-1c. Throughput - Silos

Emission	Emissian		Material		Bin Ve	ents
Emission Unit ID	Emission Point ID	Emission Unit Description	Name	Throughput (ton/yr)	Exhaust Flow (ft ³ /min)	Annual (hr/yr)
FLXSLO11	FLXSLO11	Fluxing Agent Storage Silo No. 1	Fluxing Agent	35,500	3,000	1,000
FLXSLO12	FLXSLO12	Fluxing Agent Storage Silo No. 2	Fluxing Agent	55,500	3,000	1,000
CARBSLO1	CARBSLO1	Carbon Storage Silo No. 1	Coal/Coke	16,500	2,050	1,000
DUSTSLO1	DUSTSLO1	EAF Baghouse Dust Silo	Baghouse Dust	-	1,300	8,760

Table A-1d. Throughput - Cooling Towers

Emission Emission			Co	Cooling Water Flow Rate			Drift Loss
Emission Unit ID	Emission Point ID	Emission Unit Description	Per Minute (gpm)	Hourly (10 ³ gal/hr)	Annual (10 ³ gal/yr)	TDS Content (ppmw)	(%)
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	11,000	660	5,781,600	2,000	0.001%
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	11,000	660	5,781,600	2,000	0.001%
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	11,000	660	5,781,600	2,000	0.001%
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	11,000	660	5,781,600	2,000	0.001%
CTC1	CTC1A	Contact Cooling Tower - Cell 1	5,500	330	2,890,800	2,000	0.001%
CTC1	CTC1B	Contact Cooling Tower - Cell 2	5,500	330	2,890,800	2,000	0.001%

Steel Mill

Emission Unit ID	Emission Point ID	Emission Unit Description	Number of Units	Single Unit Rating (MMBtu/hr)	Annual Utilization Rate (%)	Fuel
LPH1	CV1	Ladle Preheaters	3	6	100%	Propane/ Natural Gas
LD1	CV1	Ladle Dryers	2	8	100%	Propane/ Natural Gas
TPH1	CV1	Tundish Preheaters	2	6	100%	Propane/ Natural Gas
TD1	CV1	Tundish Dryer	1	6	100%	Propane/ Natural Gas
TMD1	CV1	Tundish Mandril Dryer	1	1	100%	Propane/ Natural Gas
SRDHTR1	CV1	Shroud Heater	1	0.5	100%	Propane/ Natural Gas
MSAUXHT	CV1	Meltshop Comfort Heaters	20	0.4	50%	Propane/ Natural Gas
BF1	RMV1	Bit Furnace	1	0.225	100%	Propane/ Natural Gas
RMAUXHT	RMV1	Rolling Mill Comfort Heaters	20	0.4	50%	Propane/ Natural Gas

Table A-1e. Throughput - Fuel Combustion

Table A-1f. Throughput - Torch Cutting

Emission	Emission	Emission Unit Description	Steel Th	roughput	Max. Fuel Usage	Heat Rating	(MMBtu/hr)	Annual Operation	Fuel
Unit ID	Point ID	-	(lb/hr)	(tpy)	(scf/hr)	Propane ¹	Natural Gas ²	(hr/yr)	
TORCH1	TORCH1	Cutting Torches	10,000	10,000	130	0.32	0.13	4,000	Propane/ Natural Gas

 ¹ Per propane heating value of and conversion of
 91.5
 MBtu/gal 0.027

 (per Technical Data for Propane, Butane and LPG Mixtures: http://www.altenergy.com/Downloads/PDF_Public/PropDataPDF.pdf, page 2)

 ² Per natural gas heating value of
 1,020

Table A-1g. Throughput - Refractory Binder	Table A-1g.	Throughput -	Refractor	y Binder
--	-------------	--------------	-----------	----------

Emission	Emission		Binder	[.] Usage
Unit ID	Point ID	Description	Hourly (lb/hr)	Annual (ton/yr)
LB1	CV1	Refractory Binder Usage - Ladle	2.12	7.52
TB1	CV1	Refractory Binder Usage - Tundish	1.28	4.51

			Throughput	
Emission Unit ID	Emission Point ID	Transfer Description	Hourly (ton/hr)	Annual (tpy)
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	830	3,380,000
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	330	2,145,000
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	110	715,000
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	110	715,000
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	30	30,695
TR81	TR81	Outside Drop Points, Alloy Aggregate	60	9,800
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	25	2,800
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	25	2,800
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	100	182,500
TR11B	TR11B	Drop from Loader to SPP Feed Hopper, Slag	100	182,500
TR131	TR131	Outside Drop Points, Residual Scrap Pile	25	2,800
TR141	TR141	Outside Drop Points, Mill Scale Pile	60	9,800

Table A-1h. Throughput - Material Transfers

Table A-1i. Throughput - Ball Drop Crushing

Emission	Emission Point ID	Drop Description	Moisture Content	Throug	ghput
Unit ID			(%)	(tph)	(tpy)
CR1	CR1	Ball Drop Crushing	1	8	8,200

Steel Mill

Emission	Emission	Bile Description	Material	Approximate D	imension (m)	Area
Unit ID	Point ID	Pile Description	Material	X Length	Y Length	(ft ²)
W51A	W51A	ECS Scrap Building Storage Pile A	Scrap	20.0	27.5	5,900
W51B	W51B	ECS Scrap Building Storage Pile B	Scrap	27.8	18.0	5,400
W51C	W51C	ECS Scrap Building Storage Pile C	Scrap	26.5	18.7	5,300
W51D	W51D	ECS Scrap Building Overage Scrap Pile	Scrap	52.4	21.5	12,100
W51E	W51E	Outside Rail Scrap 5k Pile A	Scrap	29.9	28.4	9,100
W51F	W51F	Outside Rail Scrap 5k Pile B	Scrap	29.9	28.4	9,100
W51G	W51G	Outside Rail Scrap 5k Pile C	Scrap	29.9	28.4	9,100
W51H	W51H	Outside Rail Scrap 5k Pile D	Scrap	29.9	28.4	9,100
W51K	W51K	Outside Truck Scrap 5k Pile A	Scrap	29.9	28.4	9,100
W51L	W51L	Outside Truck Scrap 5k Pile B	Scrap	29.9	28.4	9,100
W51M	W51M	Outside Truck Scrap 5k Pile C	Scrap	29.9	28.4	9,100
W51N	W51N	Outside Truck Scrap 5k Pile D	Scrap	29.9	28.4	9,100
W61	W61	Alloy Aggregate Storage Pile	Alloy Aggregate	6.6	14.6	1,000
W71A	W71A	SPP Slag Storage Pile	Slag	-	-	29,100
W71B1	W71B1	SPP A-Scrap Pile	SPP Product			
W71B2	W71B2	SPP B-Scrap Pile	SPP Product			
W71B3	W71B3	SPP C-Scrap Pile	SPP Product			
W71B4	W71B4	SPP No. 1 Products Pile	SPP Product	-	-	74,100
W71B5	W71B5	SPP No. 2 Products Pile	SPP Product			
W71B6	W71B6	SPP No. 3 Products Pile	SPP Product			
W71B7	W71B7	SPP Overs Pile	SPP Product			
W81	W81	Residual Scrap Storage Pile in Scrap	Residual Scrap	99.1	19.9	21,200
W111	W111	Mill Scale Pile	Mill Scale	15.6	20.9	3,500

Table A-1j. Throughput - Storage Piles

Table A-1k. Emergency Generators

Emission Unit ID	Emission Point ID	Emission Unit Description	Engine Tier	Rating (hp)
EGEN1	EGEN1	Emergency Generator 1	Model Year 2006+, Tier 3 Engine	1,600
EFWP1	EFWP1	Emergency Fire Water Pump 1	Model Year 2006+, Tier 3 Engine	300

Table A-11. Diesel Storage Tanks

Emission Unit ID	Emission Point ID	Emission Unit Description	Tank Type	Maximum Fill Rate (gal/hr)	Tank Capacity (gal)	Annual Throughput (gal/yr)	Maximum Annual Turnovers	Tank Diameter (ft)	Tank Length/ Height (ft)
DSLTK-GEN1	DSLTK-GEN1	Diesel Storage Tank for Emergency Generator No. 1	Horizontal Fixed Roof	500	500	25,000	50	4	6
DSLTK-FWP1	DSLTK-FWP1	Diesel Storage Tank for Fire Water Pump No. 1	Horizontal Fixed Roof	500	500	25,000	50	4	6
DSLTK-VEH	DSLTK-VEH	Diesel Storage Tank Supporting On-Site Vehicles	Vertical Fixed Roof	5,000	5,000	250,000	50	8.5	12.6

Origin	Destination	Material	Vehicle Type	Number of Trips			Trip Dista	nce (one-	Trip Type	Vehicle Miles Travelled		
				(hr ⁻¹)	(day ⁻¹)	(yr ⁻¹)	(ft)	(mile)		(VMT/hr)	(VMT/day)	(VMT/yr)
Off-Site	ECS Building Scrap Bay	Scrap	Haul Truck	2	40	10,533	2,696	0.51	Round	2.04	40.84	10,755
Off-Site	Scrap Yard	Scrap	Haul Truck	1	18	4,514	3,852	0.73	Round	1.46	26.26	6,586
Around Scrap Yard	Around Scrap Yard	Scrap	Euclid/Roll-Off Truck	1	18	4,514	2,194	0.42	Round	0.83	14.96	3,751
Around Scrap Yard	Around Scrap Yard	Scrap	Haul Truck	1	18	4,514	2,194	0.42	Round	0.83	14.96	3,751
Off-Site	Silos	Coal/Coke	Haul Truck	1	2	474	2,888	0.55	Round	1.09	2.19	519
Off-Site	Storage	Raw Materials / Supplies	Euclid/Roll-off Truck	2	2	232	3,439	0.65	Round	2.61	2.61	302
Storage	Meltshop	Raw Materials / Supplies	Forklift/Loader	2	2	232	338	0.06	Round	0.26	0.26	30
Off-Site	Silos	Fluxing Agent	Haul Truck	1	5	1,111	2,888	0.55	Round	1.09	5.47	1,215
Off-Site	Alloy Pile	Alloy Aggregate	Haul Truck	2	3	476	3,051	0.58	Round	2.31	3.47	550
Meltshop	Off-Site	Removed Refractory / Other Materials	Haul Truck	1	1	52	3,215	0.61	Round	1.22	1.22	63
Finished Products Storage	Off-Site	Finished Product	Haul Truck	3	72	18,959	7,598	1.44	Round	8.63	207.21	54,562
Off-Site	Gas Storage Area	Gas	Gas Truck	2	4	754	3,439	0.65	Round	2.61	5.21	982
Mill Scale Pile	Off-Site	Mill Scale	Haul Truck	1	5	542	4,480	0.85	Round	1.70	8.48	920
Meltshop	Quench Building	Slag	Euclid/Roll-off Truck	2	30	6,191	501	0.09	Round	0.38	5.70	1,176
Quench Building	SPP Area	Slag	Euclid/Roll-off Truck	2	30	6,191	454	0.09	Round	0.34	5.16	1,064
Within SPP Area	Within SPP Area	Slag	Loader	2	30	6,191	549	0.10	Round	0.42	6.24	1,287
SPP Area	Off-Site	Slag	Haul Truck	1	12	3,456	3,021	0.57	Round	1.14	13.73	3,954
Trailer Parking Area	Trailer Parking Area	-	Trailer	1	15	3,792	1,918	0.36	Round	0.73	10.90	2,756
General Support	General Support	-	Loader	2	16	3,212	11,002	2.08	Round	8.34	66.68	13,386

Emission	Emission	Transfer Description	Material	Fine Content	Moisture Content	Control Application				
Unit ID	Point ID			(%)	(%)	Control	Efficiency (%)	Basis		
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	Scrap	1	1	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A		
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	Scrap	1	1	None	0			
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	Scrap	1	1	None	0			
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	Scrap	1	1	None	0			
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	Fluxing Agent	7	1	Full Enclosure	80	WVDEP General Permit G40-C Instructions Table A		
TR81	TR81	Outside Drop Points, Alloy Aggregate	Alloy Aggregate	1	1	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A		
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	Removed Refractory / Other Materials	10	1	Full Enclosure	80	WVDEP General Permit G40-C Instructions Table A		
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	Removed Refractory / Other Materials	10	1	None	0			
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	Slag	2	12	None	0			
TR11B	TR11B	Proposed Drop Points, Metallic Materials	Metallic Materials	1	4	Moisture Content				
	INIID	Proposed Drop Points, Non- Metallic Materials	Non-Metallic Materials	2	7	of Material	-			
TR131	TR131	Outside Drop Points, Residual Scrap Pile	Residual Scrap	2	1	None	0			
TR141	TR141	Outside Drop Points, Mill Scale Pile	Mill Scale	15	1	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A		

Table A-3a. Controls - Material Transfers

Steel Mill

Emission	Emission Point ID	Pile Description	Matavial		Silt Content		Control Application				
Unit ID			Material	(%)	Basis	Control	Efficiency (%)	Basis			
W51A	W51A	ECS Scrap Building Storage Pile A	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A			
W51B	W51B	ECS Scrap Building Storage Pile B	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A			
W51C	W51C	ECS Scrap Building Storage Pile C	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A			
W51D	W51D	ECS Scrap Building Overage Scrap Pile	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51E	W51E	Outside Rail Scrap 5k Pile A	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51F	W51F	Outside Rail Scrap 5k Pile B	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51G	W51G	Outside Rail Scrap 5k Pile C	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51H	W51H	Outside Rail Scrap 5k Pile D	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51K	W51K	Outside Truck Scrap 5k Pile A	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51L	W51L	Outside Truck Scrap 5k Pile B	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51M	W51M	Outside Truck Scrap 5k Pile C	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W51N	W51N	Outside Truck Scrap 5k Pile D	Scrap	4.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W61	W61	Alloy Aggregate Storage Pile	Alloy Aggregate	2.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A			
W71A	W71A	SPP Slag Storage Pile	Slag	5.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W71B1	W71B1	SPP A-Scrap Pile	SPP Product								
W71B2	W71B2	SPP B-Scrap Pile	SPP Product								
W71B3	W71B3	SPP C-Scrap Pile	SPP Product								
W71B4	W71B4	SPP No. 1 Products Pile	SPP Product	5.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W71B5	W71B5	SPP No. 2 Products Pile	SPP Product								
W71B6	W71B6	SPP No. 3 Products Pile	SPP Product								
W71B7	W71B7	SPP Overs Pile	SPP Product								
W81	W81	Residual Scrap Storage Pile in Scrap Yard	Residual Scrap	5.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	None	-				
W111	W111	Mill Scale Pile	Mill Scale	5.3	Per U.S. EPA AP-42 Section 13.2.4, November 2006	Partial Enclosure	50	WVDEP General Permit G40-C Instructions Table A			

Table A-3b. Controls - Storage Piles

Table A-3c. Controls - Roads

Emission	Emission	Description	Silt Loading			Control Application			
Unit ID	Point ID		Value Unit Basis		Control	Efficiency (%)	Basis		
PR1	PR1	Paved Roads	3.34	g/m²	WVDEP General Permit G40-C Instructions Table A	Watering + Sweeping	UL UL	2008 TSD of CMC AZ MCAQD Permit V07-001 contained in Appendix C	
UR1	UR1	Unpaved Roads - Slag Quench Operations	6	%	Per U.S. EPA AP-42 Section 13.2.2, November 2006	Watering	70	WVDEP General Permit G40-C Instructions Table A	

Table A-4a, Emissions - Baghouse - EAF and LMS

Emission	Emission	Emission Unit	Steel Pro	duction Rate	Flow	v Rate				Pollutan	t							
Unit ID	Point ID	Description	Hourly (ton/hr)	Annual (tpy)	Standard (scfm)	Dry Standard ^{1, 2} (dscfm)	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NO _x	со	voc	SO ₂	Pb	Fluorides		
							Emission Factor ³											
							(gr/dscf)	(gr/dscf)	(gr/dscf)	(gr/dscf)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)	(lb/ton)		
		Meltshop					0.0018	0.0052	0.0052	0.0052	0.3	4	0.3	0.3	0.0016	0.010		
EAF1, LMS1	BH1	Baghouse	117	117 650,000	679,000	671,192				Hourly Emissions	(lb/hr) ^{4, 5}							
		5					10.36	29.92	29.92	29.92	45.63	936	35.10	49.14	0.19	1.17		
										Annual Emission	s ^{6, 7} (tpy)							
							45.36	131.03	131.03	131.03	97.50	1,300	97.50	97.50	0.52	3.25		

¹ Dry Standard Flow Rate (dscfm) = Standard (scfm) x (1 - Moisture Content (%) / 100).

² The following moisture content was determined from average measurements during the February 25-26, 2014 performance testing conducted on the CMC steel micro-mill in Mesa, AZ for a substantially similar process and baghous 1.15%

³ Emission factors for PM, PM₁₀, PM_{2.5}, NO_X, CO, VOC, SO₂, and Fluorides per BACT determination; Pb emission factors is based on process knowledge and a review of the RBLC.

⁴ PM, PM₁₀, PM_{2.5} Hourly Emissions (lb/hr) = Short-Term Emission Factor (gr/dscf x Flow Rate (dscfm) / 7,000 (gr/lb) x 60 (min/hr).

⁵ NOx, CO, VOC, SO₂, Pb, Fluorides Hourly Emissions lb/hr) = Short-Term Emission Factor (lb/ton) x Hourly Proposed Steel Production (ton/hr)

Short-term emissions of NOx, SO₂, and CO incorporate the following short-term variability factors based on process knowledge and engineering estimates:

NOx short-term variability factor 1.3

CO short-term variability factor 2.0

SO₂ short-term variability factor 1.4

⁶ PM, PM₁₀, PM_{2.5} Annual Emissions (tpy) = Short-Term Emission Factor (gr/dscf x Flow Rate (dscfm) / 7,000 (gr/lb) x 60 (min/hr) x 8,760 (hr/yr) / 2,000 lb/ton).

Pursuant to 77 FR 65107, October 25, 2012, PM emissions include filterable particulate emissions only whereas PM₁₀ and PM_{2.5} include both filterable and condensable fractions.

"By contrast, "particulate matter emissions" is regulated as a non-criteria pollutant under the portion of the definition that refers to "[a]ny pollutant that is subject to any standard promulgated under section 111 of the Act," where the condensable PM fraction generally is not required to be included in measurements to determine compliance with standards performance for PM. See 40 CFR 51.166(b)(49)(ii) and 52.21(b)(50)(ii)."

⁷ NOx, CO, VOC, SO₂, Pb, Fluorides Annual Emissions (tpy) = Emission Factor (lb/ton) x Annual Proposed Steel Production (tpy) / 2,000 (lb/ton)

Table A-4b. Emissions - Uncaptured - EAF and LMS

Emission	Emission	Emission Unit				E	Emission Estimate ¹				
Unit ID	Point ID	Description	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NO _x	СО	VOC	SO ₂	
						Но	urly Emissions (lb/	hr)			
EAF1, LMS1	CV1	Caster Vent	0.13	0.37	0.37	0.37	0.11	2.35	0.088	0.12	0
LAFI, LMJI	CVI	Caster vent				An	nual Emissions (tp	y)			
			0.57	1.64	1.64	1.64	0.24	3.26	0.24	0.24	C

Fugitive emissions, associated with the EAF/LMS, are calculated by based on the following:

DEC Capture Efficiency Capture efficiency based on BACT for similar facilities. 95% Canopy Hood Capture Efficiency 95%

Capture efficiency based on BACT for similar facilities.

Building Capture Efficiency 90% Capture efficiency based on BACT for similar facilities.

Baghouse Control Efficiency 98% Based on process knowledge

Estimation of fugitive emissions based on the melting and refining operation mode based on the following evaluation.

EAF/LMS Operation Mode ^a DI Melting and Refining			Building Enclosure	C	apture Efficiency ^b		Emissions Intensity (lb/ton) ^c				
•	DEC Status	Canopy Hood Status	Status	DEC	Canopy Hood	Building Enclosure	Uncontrolled	Non-Particulate Fugitive	Par Fu		
Melting and Refining	Active	Active	Active	95%	95%	90%	38	0.095	C		
Charging, Tapping, and Slagging	Inactive	Active	Active	0%	95%	90%	1.4	0.070	C		

^a Note that similar to the EAF, the LMS is also covered with a DEC lid that operates similar to the EAF DEC cover.

^b DEC and Canopy Hood capture efficiency based on BACT for similar facilities.

^c Emission intensity per Energy and Environmental Profile of the U.S. Iron and Steel Industry, U.S. Department of Energy (Aug. 2000), Table 5-3, for EAF (melting, refining, charging, tapping, and slagging alloy steel). Note that only "Particulate" is listed in the Table 5-3 under the rows for both "Melting and Refining" and "Charging, Tapping, and Slagging".

Therefore, "Particulate" is used as an indicator of emission intensity during the various EAF operation modes

Pb	Fluorides
0.0023	0.015
0.0065	0.041

	l
rticulate	
ugitive	
0.0095	
0.0070	

Table A-4c. GHG Emissions - EAF and LMS

			Production Rate	CO ₂ Emission Factor ¹	Annual Emissions ^{1, 2} (tpy)			
Emission Unit ID	Emission Point ID	Emission Unit Description	(+)	(metric ton/metric ton)	C0 ₂	CO ₂ e		
EAF1, LMS1	BH1	Meltshop Baghouse	650,000	0.18	119,513	119,513		
EAF1, LMS1	CV1	Caster Vent	650,000	-	300	300		

¹ Emissions of CO₂ calculated per 40 CFR Part 98, Subpart Q, Equation Q-8 and 40 CFR §98.173(b)(2)(iii).

$$CO_2 = 5.18x10^{-7} x C_{CO2} x Q x \left(\frac{100 - \% H2O}{100}\right)$$

Calculation paramaters based on the following.

			C _{CO2}	Q		CO2	Pr	ocess Rate	CO2 Emission Factor
Location	Test Date	Run No.	(% dry)	(SCFH)	%H ₂ O	(metric tons/hr)	(tons/hr)	(metric tons/hr)	(metric ton/metric ton)
		1	0.91	15,200,000	3.90	6.89	58.64	53.20	0.129
	6/26/2018	2	0.91	18,200,000	3.50	8.28	59.89	54.33	0.152
		3	0.60	18,900,000	3.10	5.69	54.45	49.40	0.115
		1	0.75	16,922,105	2.28	6.42	67.85	61.55	0.104
CMC Durant, OK	9/21/2021	2	0.78	17,023,242	2.68	6.69	65.34	59.28	0.113
		3	0.81	17,105,437	2.63	6.99	67.36	61.11	0.114
	7/28/2022	1	0.57	22,827,480	2.64	6.56	67.24	61.00	0.108
	772072022	2	0.59	23,052,900	2.3	6.88	67.98	61.67	0.112
	7/29/2022	3	0.57	23,246,940	2.68	6.68	67.88	61.58	0.108
		1	0.74	15,520,000	1.6	5.85	60.19	54.6	0.107
	2/12/2010	2	0.84	15,520,000	1.6	6.65	63.60	57.7	0.115
	2/12/2019	3	0.79	16,610,000	1.7	6.68	71.54	64.9	0.103
		4	0.73	16,610,000	1.7	6.17	62.83	57.0	0.108
Γ		1	0.88	18,700,000	2.8	8.29	57.98	52.6	0.158
	2/10/2020	2	1.05	18,700,000	2.8	9.89	65.37	59.3	0.167
CMC Mesa, AZ	2/18/2020	3	0.79	18,370,000	2.9	7.30	59.41	53.9	0.135
CMC Mesa, AZ		4	1.00	18,370,000	2.9	9.24	66.25	60.1	0.154
Γ		1	0.81	19,020,000	1.5	7.86	58.09	52.7	0.149
		2	0.73	19,020,000	1.5	7.08	45.53	41.3	0.172
	2/22/2021	3	0.83	19,590,000	2.2	8.24	49.38	44.8	0.184
	2/23/2021	4	0.63	19,590,000	2.2	6.25	47.40	43.0	0.145
		5	0.79	19,590,000	2.2	7.84	56.66	51.4	0.153
		6	0.78	19,590,000	2.2	7.74	56.66	51.4	0.151
Max									0.184

The operations at CMC Durant, OK and CMC Mesa, AZ are associated with an ECS micro-mill and are substantially similar to the proposed Project. The maximum emission factor is used to account for possible variations in the carbon source at the proposed Project and its potential impact on emissions.

 CO_2 Emission Factor (metric ton/metric ton) = CO_2 Emission Rate (metric ton/hr) / Hourly Steel Production Rate (metric ton/hr).

 $^2\,$ CO_2e calculated using Global Warming Potentials (GWPs) from Table A-1 of 40 CFR Part 98, December 2014. CO_2 GWP = 1

Steel Mill

Emission Unit ID	Emission Point ID	Emission Unit Description	Steel Pro	oduction Rate	Species	Emission Factors	2	Annual Emissions ³
			(tph)	(tpy)		(lb/ton)	(lb/hr)	(tpy)
					Lead Compounds	1.60E-03	1.87E-01	5.20E-01
					Arsenic	1.10E-05	1.28E-03	3.56E-03
					Beryllium	1.29E-05	1.51E-03	4.19E-03
					Cadmium	2.10E-04	2.46E-02	6.83E-02
					Chromium	7.53E-04	8.80E-02	2.45E-01
					Manganese	3.72E-03	4.36E-01	1.21E+00
EAF1, LMS1	BH1	Meltshop	117	650.000	Mercury	6.20E-04	7.25E-02	2.02E-01
LAFI, LMSI	DIT	Baghouse	11/	650,000	Nickel	4.36E-05	5.10E-03	1.42E-02
					2,3,7,8-			
					Tetrachlorodibenzo-p-	6.63E-08	7.75E-06	2.15E-05
					dioxin			
					Cobalt	4.53E-05	5.30E-03	1.47E-02
					Antimony	4.98E-05	5.83E-03	1.62E-02
					Selenium	2.74E-05	3.21E-03	8.91E-03
					Lead Compounds	2.01E-05	2.35E-03	6.52E-03
					Arsenic	1.37E-07	1.61E-05	4.46E-05
					Beryllium	1.61E-07	1.89E-05	5.25E-05
					Cadmium	2.63E-06	3.08E-04	8.55E-04
					Chromium	9.43E-06	1.10E-03	3.06E-03
					Manganese	4.67E-05	5.46E-03	1.52E-02
EAF1, LMS1	CV1	Caster Vent	117	650,000	Mercury	7.77E-06	9.09E-04	2.53E-03
,				,	Nickel	5.47E-07	6.40E-05	1.78E-04
					2,3,7,8-			
					Tetrachlorodibenzo-p-	8.30E-10	9.71E-08	2.70E-07
					dioxin			
					Cobalt	5.67E-07	6.64E-05	1.84E-04
					Antimony	6.24E-07	7.30E-05	2.03E-04
					Selenium	3.43E-07	4.02E-05	1.12E-04

Table A-4d. HAP Emissions - EAF and LMS

¹ HAP emission factors are based on process experience from other CMC micro mills
 ² Hourly Emissions lb/hr) = Hourly Steel Production Rate (ton/hr) x Emission Factor lb/ton).

Steel Mill

Table A-5. Emissions - Fabric Filters

					Annual Operation		Emission Factor ¹ (gr/dscf)			/ Emissio (lb/hr)	ons ^{2, 4}	Annual Emissions [°] (tpy)		
Emission Unit ID	Emission Point ID	Emission Unit Description	Material	Flow Rate (dscfm)	(hr/yr)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
FLXSLO11	FLXSL011	Fluxing Agent Storage Silo No. 1	Fluxing Agent	3,000	1,000	0.005	0.005	0.005	0.13	0.13	0.13	0.064	0.064	0.064
FLXSLO12	FLXSL012	Fluxing Agent Storage Silo No. 2	Fluxing Agent	3,000	1,000	0.005	0.005	0.005	0.13	0.13	0.13	0.064	0.064	0.064
CARBSLO1	CARBSLO1	Carbon Storage Silo No. 1	Coal/Coke	2,050	1,000	0.005	0.005	0.005	0.088	0.088	0.088	0.044	0.044	0.044
DUSTSLO1	DUSTSLO1	EAF Baghouse Dust Silo	Baghouse Dust	1,300	8,760	0.005	0.005	0.005	0.056	0.056	0.056	0.24	0.24	0.24

¹ Emission factors per BACT determination.

² Hourly Emissions lb/hr) = Emission Factor (gr/dscf x Flow Rate (dscfm) / 7,000 (gr/lb) x 60 (min/hr).
 ³ Annual Emissions (tpy) = Hourly Emissions lb/hr) x (hr/yr) / 2,000 lb/ton).
 Emissions through the filter vents only occur when the silo is being loaded which occurs at the base of the silo during truck deliveries and transfer of dust from the meltshop baghouse.

Table A-6. Emissions - Caster Teeming

Emission Unit ID	n Emission	Emission Unit Description	Steel Pro Ra	oduction Ite		Emission (lb/	Factor ¹ ton)				missions ² /hr)			Annual Eı (tı	nissions ³ 9y)	
	Point ID		Hourly (ton/hr)	Annual (tpy)	Total PM	Total PM ₁₀	Total PM _{2.5}	voc	Total PM	Total PM ₁₀	Total PM _{2.5}	VOC	Total PM	Total PM ₁₀	Total PM _{2.5}	voc
CAST1	CV1	Caster Teeming	117	650,000	0.0070	0.0070	0.0070	0.00020	0.82	0.82	0.82	0.023	2.28	2.28	2.28	0.065

¹ No emission factors are available for teeming associated with continuous casting so 10% of the factor for PM emissions from conventional ingot teeming of unleaded steel (uncontrolled) from AP-42 Section 12.5, Table 12.5-1, January 1995

and 10% of the factor for VOC emissions from conventional ingot teeming of unleaded steel (SCC 3-03-009) from Point Sources Committee's Emission Inventory Improvement Program: Uncontrolled Emission Factor Listing for Criteria Air Pollutants, July 2001 were used. The 10% assumption was made because (1) the transfer of steel from ladles to the tundish to the mold for the continuous caster is more enclosed than the transfer for conventional ingot casting and (2) the continuous caster mold is water-cooled while conventional molds are not. The emission factors for PM₁₀ and PM_{2.5} are conservatively assumed to be equal to the emission factor for PM.

² Hourly Emissions lb/hr) = Hourly Steel Production Rate (ton/hr) x Emission Factor lb/ton).

³ Annual Emissions (tpy) = Annual Steel Production Rate (tpy) x Emission Factor lb/ton) / 2,000 lb/ton).

Emission	Emission	Emission Unit Description	Water Flow	Drift Loss	Drift Loss	TDS	TDS Density	Hour	ly Emiss (lb/hr)	ions ¹	Annual Emissions ² (tpy)		
Unit ID	Point ID		(gal/min)	(%)	(gal/hr)	(mg/l)	(mg/l)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	11,000	0.001%	7	2,000	2.5	0.11	0.08	0.0002	0.48	0.33	0.0010
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	11,000	0.001%	7	2,000	2.5	0.11	0.08	0.0002	0.48	0.33	0.0010
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	11,000	0.001%	7	2,000	2.5	0.11	0.08	0.0002	0.48	0.33	0.0010
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	11,000	0.001%	7	2,000	2.5	0.11	0.08	0.0002	0.48	0.33	0.0010
CTC1	CTC1A	Contact Cooling Tower - Cell 1	5,500	0.001%	3	2,000	2.5	0.06	0.04	0.00012	0.24	0.16	0.0005
CTC1	CTC1B	Contact Cooling Tower - Cell 2	5,500	0.001%	3	2,000	2.5	0.06	0.04	0.00012	0.24	0.16	0.0005

Table A-7a. Emissions - Cooling Towers

¹ PM Hourly Emissions lb/hr) = Hourly Cooling Water Flow Rate (thou gal/hr) x 1,000 (gal/thou gal) x Drift Loss (%) / 100 x 8.34 lb/gal) x TDS Content (ppmw) / 1,000,000 (ppm). ² Annual emissions (tpy) calculated based on: 8,760 hr/yr hr/yr

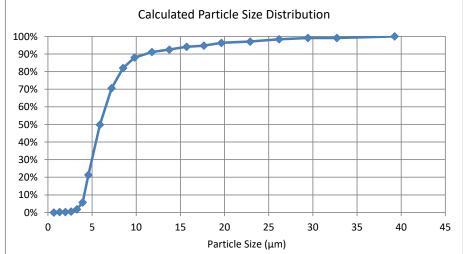
68.15%

0.22%

0.11 lb/hr

0.08 lb/hr

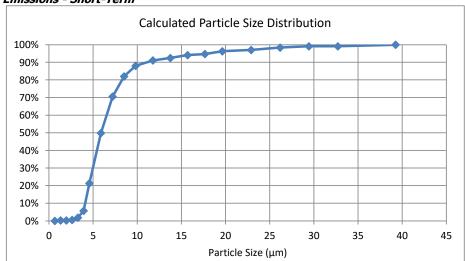
	Data Entry
Emission Unit ID	CTNC11
Emission Point ID	CTNC11A
Emission Unit Description	Non-Contact Cooling
	Tower 1 - Cell 1
Water Circulation Rate	11,000 gal/min
PM Drift Rate	0.0010%
TDS	2,000 ppmw
Droplet Density	1 g/cm ³
Solids Density	2.5 g/cm ³


Calculations

PM₁₀ Fraction

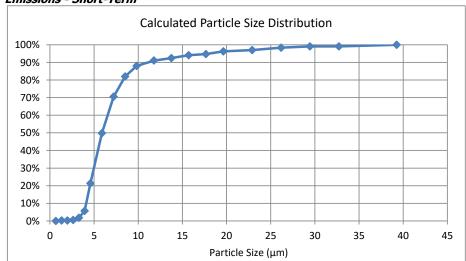
PM_{2.5} Fraction

PM Emissions


PM₁₀ Emissions

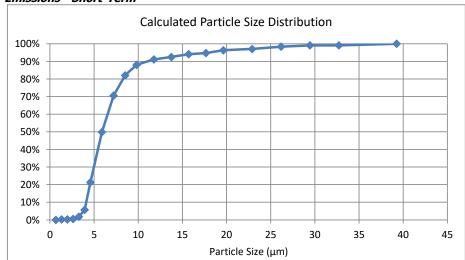
PN	A _{2.5} Emissions	0.0002	lb/hr			Р	Particle Size (μm)
Droplet Diameter (µm)	Droplet Volume (µm³)	Droplet Mass (µg)	Solid Particle Mass (µg)	Solid Particle Volume (µm ³)	Solid Particle Diameter (µm)	Mass Size Distribution CDF (%)	PM ₁₀ Fraction (%)	PM _{2.5} Fraction (%)
10	524	1.31E-03	1.05E-06	0.42	0.93	0.00%	0.00%	0.00%
20	4,189	1.05E-02	8.38E-06	3.35	1.86	0.20%	0.00%	0.00%
30	14,137	3.53E-02	2.83E-05	11.31	2.78	0.23%	0.00%	0.22%
40	33,510	8.38E-02	6.70E-05	26.81	3.71	0.51%	0.00%	0.00%
50	65,450	1.64E-01	1.31E-04	52.36	4.64	1.82%	0.00%	0.00%
60	113,097	2.83E-01	2.26E-04	90.48	5.57	5.70%	0.00%	0.00%
70	179,594	4.49E-01	3.59E-04	143.68	6.50	21.35%	0.00%	0.00%
90	381,704	9.54E-01	7.63E-04	305.36	8.35	49.81%	0.00%	0.00%
110	696,910	1.74E+00	1.39E-03	557.53	10.21	70.51%	68.15%	0.00%
130	1,150,347	2.88E+00	2.30E-03	920.28	12.07	82.02%	0.00%	0.00%
150	1,767,146	4.42E+00	3.53E-03	1,413.72	13.92	88.01%	0.00%	0.00%
180	3,053,628	7.63E+00	6.11E-03	2,442.90	16.71	91.03%	0.00%	0.00%
210	4,849,048	1.21E+01	9.70E-03	3,879.24	19.49	92.47%	0.00%	0.00%
240	7,238,229	1.81E+01	1.45E-02	5,790.58	22.28	94.09%	0.00%	0.00%
270	10,305,995	2.58E+01	2.06E-02	8,244.80	25.06	94.69%	0.00%	0.00%
300	14,137,167	3.53E+01	2.83E-02	11,309.73	27.85	96.29%	0.00%	0.00%
350	22,449,298	5.61E+01	4.49E-02	17,959.44	32.49	97.01%	0.00%	0.00%
400	33,510,322	8.38E+01	6.70E-02	26,808.26	37.13	98.34%	0.00%	0.00%
450	47,712,938	1.19E+02	9.54E-02	38,170.35	41.77	99.07%	0.00%	0.00%
500	65,449,847	1.64E+02	1.31E-01	52,359.88	46.42	99.07%	0.00%	0.00%
600	113,097,336	2.83E+02	2.26E-01	90,477.87	55.70	100.00%	0.00%	0.00%

Table A-7c. Emissions - Cooling Towers - Particulate Matter Emissions	- Short-Term
---	--------------


	Data Entry
Emission Unit ID	CTNC11
Emission Point ID	CTNC11B
Emission Unit Description	Non-Contact Cooling Tower 1 - Cell 2
Water Circulation Rate	11,000 gal/min
PM Drift Rate	0.0010%
TDS	2,000 ppmw
Droplet Density	1 g/cm ³
Solids Density	2.5 g/cm ³

Calculations				
PM ₁₀ Fraction	68.15%			
PM _{2.5} Fraction	0.22%			
PM Emissions	0.11 lb/hr			
PM ₁₀ Emissions	0.08 lb/hr			
PM _{2.5} Emissions	0.0002 lb/hr			

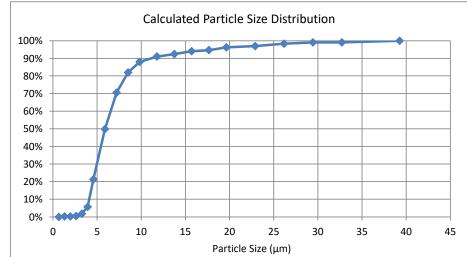
			Solid	Solid	Solid	Mass Size		
Droplet	Droplet	Droplet	Particle	Particle	Particle	Distributio	PM ₁₀	PM _{2.5}
Diameter	Volume	Mass	Mass	Volume	Diameter	CDF	Fraction	Fraction
(µm)	(µm ³)	(µg)	(µg)	(µm ³)	(µm)	(%)	(%)	(%)
10	524	1.31E-03	1.05E-06	0.42	0.93	0.00%	0.00%	0.00%
20	4,189	1.05E-02	8.38E-06	3.35	1.86	0.20%	0.00%	0.00%
30	14,137	3.53E-02	2.83E-05	11.31	2.78	0.23%	0.00%	0.22%
40	33,510	8.38E-02	6.70E-05	26.81	3.71	0.51%	0.00%	0.00%
50	65,450	1.64E-01	1.31E-04	52.36	4.64	1.82%	0.00%	0.00%
60	113,097	2.83E-01	2.26E-04	90.48	5.57	5.70%	0.00%	0.00%
70	179,594	4.49E-01	3.59E-04	143.68	6.50	21.35%	0.00%	0.00%
90	381,704	9.54E-01	7.63E-04	305.36	8.35	49.81%	0.00%	0.00%
110	696,910	1.74E+00	1.39E-03	557.53	10.21	70.51%	68.15%	0.00%
130	1,150,347	2.88E+00	2.30E-03	920.28	12.07	82.02%	0.00%	0.00%
150	1,767,146	4.42E+00	3.53E-03	1,413.72	13.92	88.01%	0.00%	0.00%
180	3,053,628	7.63E+00	6.11E-03	2,442.90	16.71	91.03%	0.00%	0.00%
210	4,849,048	1.21E+01	9.70E-03	3,879.24	19.49	92.47%	0.00%	0.00%
240	7,238,229	1.81E+01	1.45E-02	5,790.58	22.28	94.09%	0.00%	0.00%
270	10,305,995	2.58E+01	2.06E-02	8,244.80	25.06	94.69%	0.00%	0.00%
300	14,137,167	3.53E+01	2.83E-02	11,309.73	27.85	96.29%	0.00%	0.00%
350	22,449,298	5.61E+01	4.49E-02	17,959.44	32.49	97.01%	0.00%	0.00%
400	33,510,322	8.38E+01	6.70E-02	26,808.26	37.13	98.34%	0.00%	0.00%
450	47,712,938	1.19E+02	9.54E-02	38,170.35	41.77	99.07%	0.00%	0.00%
500	65,449,847	1.64E+02	1.31E-01	52,359.88	46.42	99.07%	0.00%	0.00%
600	113,097,336	2.83E+02	2.26E-01	90,477.87	55.70	100.00%	0.00%	0.00%


	Data Entry
Emission Unit ID	CTNC12
Emission Point ID	CTNC12A
Emission Unit Description	Non-Contact Cooling Tower 2 - Cell 1
Water Circulation Rate	11,000 gal/min
PM Drift Rate	0.0010%
TDS	2,000 ppmw
Droplet Density	1 g/cm ³
Solids Density	2.5 g/cm ³

Calcula	ations
PM ₁₀ Fraction	68.15%
PM _{2.5} Fraction	0.22%
PM Emissions	0.11 lb/hr
PM ₁₀ Emissions	0.08 lb/hr
PM _{2.5} Emissions	0.0002 lb/hr

			Solid	Solid	Solid	Mass Size		
Droplet	Droplet	Droplet	Particle	Particle	Particle	Distributio	PM ₁₀	PM _{2.5}
Diameter	Volume	Mass	Mass	Volume	Diameter	CDF	Fraction	Fraction
(µm)	(µm ³)	(µg)	(µg)	(µm ³)	(µm)	(%)	(%)	(%)
10	524	1.31E-03	1.05E-06	0.42	0.93	0.00%	0.00%	0.00%
20	4,189	1.05E-02	8.38E-06	3.35	1.86	0.20%	0.00%	0.00%
30	14,137	3.53E-02	2.83E-05	11.31	2.78	0.23%	0.00%	0.22%
40	33,510	8.38E-02	6.70E-05	26.81	3.71	0.51%	0.00%	0.00%
50	65,450	1.64E-01	1.31E-04	52.36	4.64	1.82%	0.00%	0.00%
60	113,097	2.83E-01	2.26E-04	90.48	5.57	5.70%	0.00%	0.00%
70	179,594	4.49E-01	3.59E-04	143.68	6.50	21.35%	0.00%	0.00%
90	381,704	9.54E-01	7.63E-04	305.36	8.35	49.81%	0.00%	0.00%
110	696,910	1.74E+00	1.39E-03	557.53	10.21	70.51%	68.15%	0.00%
130	1,150,347	2.88E+00	2.30E-03	920.28	12.07	82.02%	0.00%	0.00%
150	1,767,146	4.42E+00	3.53E-03	1,413.72	13.92	88.01%	0.00%	0.00%
180	3,053,628	7.63E+00	6.11E-03	2,442.90	16.71	91.03%	0.00%	0.00%
210	4,849,048	1.21E+01	9.70E-03	3,879.24	19.49	92.47%	0.00%	0.00%
240	7,238,229	1.81E+01	1.45E-02	5,790.58	22.28	94.09%	0.00%	0.00%
270	10,305,995	2.58E+01	2.06E-02	8,244.80	25.06	94.69%	0.00%	0.00%
300	14,137,167	3.53E+01	2.83E-02	11,309.73	27.85	96.29%	0.00%	0.00%
350	22,449,298	5.61E+01	4.49E-02	17,959.44	32.49	97.01%	0.00%	0.00%
400	33,510,322	8.38E+01	6.70E-02	26,808.26			0.00%	0.00%
450	47,712,938	1.19E+02	9.54E-02	38,170.35	41.77	99.07%	0.00%	0.00%
500	65,449,847	1.64E+02	1.31E-01	52,359.88	46.42	99.07%	0.00%	0.00%
600	113,097,336	2.83E+02	2.26E-01	90,477.87	55.70	100.00%	0.00%	0.00%

	Data Entry
Emission Unit ID	CTNC12
Emission Point ID	CTNC12B
Emission Unit Description	Non-Contact Cooling Tower 2 - Cell 2
Water Circulation Rate	11,000 gal/min
PM Drift Rate	0.0010%
TDS	2,000 ppmw
Droplet Density	1.0 g/cm ³
Solids Density	2.5 g/cm ³



Calcu	Ilations	
PM ₁₀ Fraction	68.15%	
PM _{2.5} Fraction	0.22%	
PM Emissions	0.11 lb/hr	
PM ₁₀ Emissions	0.08 lb/hr	
PM _{2.5} Emissions	0.0002 lb/hr	

			Solid	Solid	Solid	Mass Size		
Droplet	Droplet	Droplet	Particle	Particle	Particle	Distributio	PM ₁₀	PM _{2.5}
Diameter	Volume	Mass	Mass	Volume	Diameter	CDF	Fraction	Fraction
(µm)	(µm ³)	(µg)	(µg)	(µm ³)	(µm)	(%)	(%)	(%)
10	524	1.31E-03	1.05E-06	0.42	0.93	0.00%	0.00%	0.00%
20	4,189	1.05E-02	8.38E-06	3.35	1.86	0.20%	0.00%	0.00%
30	14,137	3.53E-02	2.83E-05	11.31	2.78		0.00%	0.22%
40	33,510		6.70E-05	26.81	3.71	0.51%	0.00%	0.00%
50	65,450	1.64E-01	1.31E-04	52.36	4.64	1.82%	0.00%	0.00%
60	113,097	2.83E-01	2.26E-04	90.48	5.57	5.70%	0.00%	0.00%
70	179,594	4.49E-01	3.59E-04	143.68	6.50	21.35%	0.00%	0.00%
90	381,704		7.63E-04	305.36	8.35	49.81%	0.00%	0.00%
110	696,910	1.74E+00	1.39E-03	557.53	10.21	70.51%	68.15%	0.00%
130	1,150,347	2.88E+00	2.30E-03	920.28	12.07	82.02%	0.00%	0.00%
150	1,767,146	4.42E+00	3.53E-03	1,413.72	13.92	88.01%	0.00%	0.00%
180	3,053,628	7.63E+00	6.11E-03	2,442.90	16.71	91.03%	0.00%	0.00%
210	4,849,048	1.21E+01	9.70E-03	3,879.24	19.49	92.47%	0.00%	0.00%
240	7,238,229	1.81E+01	1.45E-02	5,790.58	22.28	94.09%	0.00%	0.00%
270	10,305,995	2.58E+01	2.06E-02	8,244.80	25.06	94.69%	0.00%	0.00%
300	14,137,167	3.53E+01	2.83E-02	11,309.73	27.85	96.29%	0.00%	0.00%
350	22,449,298	5.61E+01	4.49E-02	17,959.44	32.49	97.01%	0.00%	0.00%
400	33,510,322	8.38E+01	6.70E-02	26,808.26	37.13	98.34%	0.00%	0.00%
450	47,712,938	1.19E+02	9.54E-02	38,170.35	41.77	99.07%	0.00%	0.00%
500	65,449,847	1.64E+02	1.31E-01	52,359.88	46.42	99.07%	0.00%	0.00%
600	113,097,336	2.83E+02	2.26E-01	90,477.87	55.70	100.00%	0.00%	0.00%

	Data Entry
Emission Unit ID	CTC1
Emission Point ID	CTC1A
Emission Unit Description	Contact Cooling Tower
Emission one Description	Cell 1
Water Circulation Rate	5,500 gal/min
PM Drift Rate	0.0010%
TDS	2,000 ppmw
Droplet Density	1.0 g/cm ³
Solids Density	2.5 g/cm ³

Calcula	ations
PM ₁₀ Fraction	68.15%
PM _{2.5} Fraction	0.22%
PM Emissions	0.06 lb/hr
PM ₁₀ Emissions	0.04 lb/hr
PM _{2.5} Emissions	0.00012 lb/hr

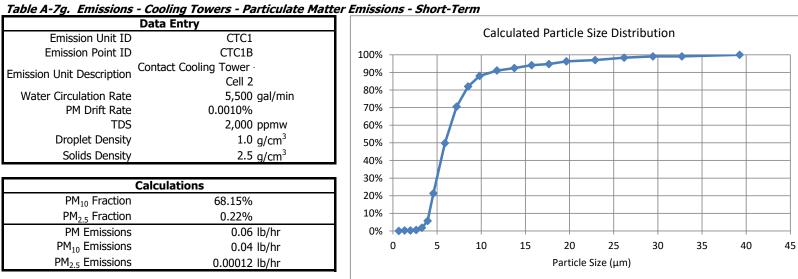
			Solid	Solid	Solid	Mass Size		
Droplet	Droplet	Droplet	Particle	Particle	Particle	Distributio	PM ₁₀	PM _{2.5}
Diameter	Volume	Mass	Mass	Volume	Diameter	CDF	Fraction	Fraction
(µm)	(µm ³)	(µg)	(µg)	(µm ³)	(µm)	(%)	(%)	(%)
10	524	1.31E-03	1.05E-06	0.42	0.93	0.00%	0.00%	0.00%
20	4,189	1.05E-02	8.38E-06	3.35	1.86	0.20%	0.00%	0.00%
30	14,137	3.53E-02	2.83E-05	11.31	2.78	0.23%	0.00%	0.22%
40	33,510	8.38E-02	6.70E-05	26.81	3.71	0.51%	0.00%	0.00%
50	65,450	1.64E-01	1.31E-04	52.36	4.64	1.82%	0.00%	0.00%
60	113,097	2.83E-01	2.26E-04	90.48	5.57	5.70%	0.00%	0.00%
70	179,594	4.49E-01	3.59E-04	143.68	6.50	21.35%	0.00%	0.00%
90	381,704	9.54E-01	7.63E-04	305.36	8.35	49.81%	0.00%	0.00%
110	696,910	1.74E+00	1.39E-03	557.53	10.21	70.51%	68.15%	0.00%
130	1,150,347	2.88E+00	2.30E-03	920.28	12.07	82.02%	0.00%	0.00%
150	1,767,146	4.42E+00	3.53E-03	1,413.72	13.92	88.01%	0.00%	0.00%
180	3,053,628	7.63E+00	6.11E-03	2,442.90	16.71	91.03%	0.00%	0.00%
210	4,849,048	1.21E+01	9.70E-03	3,879.24	19.49	92.47%	0.00%	0.00%
240	7,238,229	1.81E+01	1.45E-02	5,790.58	22.28	94.09%	0.00%	0.00%
270	10,305,995	2.58E+01	2.06E-02	8,244.80	25.06	94.69%	0.00%	0.00%
300	14,137,167	3.53E+01	2.83E-02	11,309.73	27.85	96.29%	0.00%	0.00%
350	22,449,298	5.61E+01	4.49E-02	17,959.44	32.49	97.01%	0.00%	0.00%
400	33,510,322	8.38E+01	6.70E-02	26,808.26	37.13	98.34%	0.00%	0.00%
450	47,712,938	1.19E+02	9.54E-02	38,170.35	41.77	99.07%	0.00%	0.00%
500	65,449,847	1.64E+02	1.31E-01	52,359.88	46.42	99.07%	0.00%	0.00%
600	113,097,336	2.83E+02	2.26E-01	90,477.87	55.70	100.00%	0.00%	0.00%

	Data Entry
Emission Unit ID	CTC1
Emission Point ID	CTC1B
Emission Unit Description	Contact Cooling Tower
Emission one Description	Cell 2
Water Circulation Rate	5,500 gal/min
PM Drift Rate	0.0010%
TDS	2,000 ppmw
Droplet Density	1.0 g/cm ³
Solids Density	2.5 g/cm ³

Calculations

68.15%

0.22%


0.06 lb/hr

0.04 lb/hr

PM₁₀ Fraction

PM_{2.5} Fraction PM Emissions

PM₁₀ Emissions

PM_{2.5}

Fraction

(%) 0.00%

0.00%

0.22%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

PI	M _{2.5} Emissions	0.00012	lb/hr			F	Particle Size (μ
Droplet Diameter	Droplet Volume	Droplet Mass	Solid Particle Mass	Solid Particle Volume	Diameter	Mass Size Distribution CDF	PM ₁₀ Fraction
(µm)	(µm ³)	(µg)	(µg)	(µm ³)	(µm)	(%)	(%)
10	524	1.31E-03	1.05E-06	0.42	0.93	0.00%	0.00%
20	4,189	1.05E-02	8.38E-06	3.35	1.86	0.20%	0.00%
30	14,137	3.53E-02	2.83E-05	11.31	2.78	0.23%	0.00%
40	33,510	8.38E-02	6.70E-05	26.81	3.71	0.51%	0.00%
50	65,450	1.64E-01	1.31E-04	52.36	4.64	1.82%	0.00%
60	113,097	2.83E-01	2.26E-04	90.48	5.57	5.70%	0.00%
70	179,594	4.49E-01	3.59E-04	143.68	6.50	21.35%	0.00%
90	381,704	9.54E-01	7.63E-04	305.36	8.35	49.81%	0.00%
110	696,910	1.74E+00	1.39E-03	557.53	10.21	70.51%	68.15%
130	1,150,347	2.88E+00	2.30E-03	920.28	12.07	82.02%	0.00%
150	1,767,146	4.42E+00	3.53E-03	1,413.72	13.92	88.01%	0.00%
180	3,053,628	7.63E+00	6.11E-03	2,442.90	16.71	91.03%	0.00%
210	4,849,048	1.21E+01	9.70E-03	3,879.24	19.49	92.47%	0.00%
240	7,238,229	1.81E+01	1.45E-02	5,790.58	22.28	94.09%	0.00%
270	10,305,995	2.58E+01	2.06E-02	8,244.80	25.06	94.69%	0.00%
300	14,137,167	3.53E+01	2.83E-02	11,309.73	27.85	96.29%	0.00%

4.49E-02

6.70E-02

9.54E-02

1.31E-01

2.26E-01

17,959.44

26,808.26

38,170.35

52,359.88

90,477.87

CMC Steel US, LLC

350

400

450

500

600

22,449,298

33,510,322

47,712,938

65,449,847

113,097,336

5.61E+01

8.38E+01

1.19E+02

1.64E+02

2.83E+02

32.49

37.13

41.77

46.42

55.70

97.01%

98.34%

99.07%

99.07%

100.00%

Ţ				Single Unit	Annual												-		Emission	Factor (lb/M	IMBtu) ²												
				Rating	Utilization	Total Heat In	nput Rating ¹	Filterabl		Total	Total	Propa	ine	1	1		Filterable	1	1	Nat	tural Gas					Filterable	Total	Total		ximum	<u> </u>		
	Emission Point ID	Emission Unit Description	Number of Units	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)	e PM	Total PM	PM ₁₀	PM _{2.5}	NOx	со	voc	SO ₂	Pb	PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NO _x	со	voc	SO ₂	Pb	PM		PM ₁₀	Total PM _{2.5}	NOx	со	voc	50 ₂ P
LPH1	CV1	Ladle Preheaters	3	6	100%	18	157,680	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077	0.0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
LD1	CV1	Ladle Dryers	2	8	100%	16	140,160	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 (0.0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
TPH1	CV1	Tundish Preheaters	2	6	100%	12	105,120	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 ().0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
TD1	CV1	Tundish Dryer	1	6	100%	6	52,560	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 ().0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
TMD1	CV1	Tundish Mandril Dryer	1	1	100%	1	8,760	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 ().0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
RDHTR1	CV1	Shroud Heater	1	1	100%	0.5	4,380	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 ().0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
SAUXHT	CV1	Meltshop Comfort Heaters	20	0.4	50%	8	35,040	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 (0.0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
BF1	RMV1	Bit Furnace	1	0.225	100%	0.23	1,971	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 ().0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
MAUXHT	RMV1	Rolling Mill Comfort Heaters	20	0.4	50%	8	35,040	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077 ().0077	0.0077	0.14	0.082 0	0.0087	0.011 4.908
FORCH1	TORCH1	Cutting Torches	-	0.32	46%	0.32	1,285	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	-	0.0019	0.0075	0.0075	0.0075	0.098	0.082	0.0054	0.00059	4.90E-07	0.0022	0.0077).0077	0.0077	0.14	0.082 0	0.0087	0.011 4.90
	Emission	Emission Unit	Number				Hourly Emis (lb/hr									An	nual Emissio (tpy)	ns *															
Unit ID	Point ID	Description	of Units	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NOx	со	voc	SO ₂	Pb	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NO _x	со	voc	SO ₂	Pb												
LPH1	CV1	Ladle Preheaters	3	0.039	0.14	0.14	0.14	2.56	1.48	0.16	0.20	8.82E-06	0.17	0.60	0.60	0.60	11.20	6.49	0.69	0.86	3.86E-05												
LD1	CV1	Ladle Dryers	2	0.035	0.12	0.12	0.12	2.27	1.32	0.14	0.17	7.84E-06	0.15	0.54	0.54	0.54	9.96	5.77	0.61	0.77	3.44E-05												
TPH1	CV1	Tundish Preheaters	2	0.026	0.092	0.092	0.092	1.70	0.99	0.10	0.13	5.88E-06	0.11	0.40	0.40	0.40	7.47	4.33	0.46	0.57	2.58E-05												
TD1	CV1	Tundish Dryer	1	0.013	0.046	0.046	0.046	0.85	0.49	0.052	0.066	2.94E-06	0.057	0.20	0.20	0.20	3.73	2.16	0.23	0.29	1.29E-05												
TMD1	CV1	Tundish Mandril Dryer	1	0.0022	0.0077	0.0077	0.0077	0.14	0.082	0.0087	0.011	4.90E-07	0.010	0.034	0.034	0.034	0.62	0.36	0.038	0.048	2.15E-06	_											
RDHTR1	CV1	Shroud Heater	1	0.0011	0.0038	0.0038	0.0038	0.071	0.041	0.0044	0.0055	2.45E-07	0.0048	0.017	0.017	0.017	0.31	0.18	0.019	0.024	1.07E-06												
ISAUXHT	CV1	Meltshop Comfort Heaters	20	0.017	0.061	0.061	0.061	1.14	0.66	0.070	0.087	3.92E-06	0.038	0.134	0.134	0.134	2.49	1.44	0.15	0.19	8.59E-06												
BF1	RMV1	Bit Furnace	1	0.00049	0.0017	0.0017	0.0017	0.032	0.019	0.0020	0.0025	1.10E-07	0.0022	0.0075	0.0075	0.0075	0.14	0.081	0.0086	0.011	4.83E-07												
MAUXHT	RMV1	Rolling Mill Comfort Heaters	20	0.017	0.061	0.061	0.061	1.14	0.66	0.070	0.087	3.92E-06	0.038	0.134	0.134	0.134	2.49	1.44	0.15	0.19	8.59E-06												
FORCH1	TORCH1	Cutting Torches	-	0.00070	0.0025	0.0025	0.0025	0.046	0.026	0.0028	0.0035	1.57E-07	0.00140	0.0049	0.0049	0.0049	0.091	0.053	0.0056	0.0070	3.15E-07												
	CV1	Proposed Caster Vent	-	0.13	0.47	0.47	0.47	8.74	5.06	0.54	0.67	3.01E-05	0.55	1.93	1.93	1.93	35.78	20.74	2.20	2.75	1.23E-04	_											
	RMV1	Proposed Rolling Mill Vent	-	0.018	0.063	0.063	0.063	1.17	0.68	0.072	0.090	4.03E-06	0.040	0.142	0.142	0.142	2.63	1.52	0.162	0.20	9.07E-06	-											
		Cutting Torches	-	0.00070	0.0025	0.0025	0.0025	0.046	0.026	0.0028	0.0035	1.57E-07	0.00140	0.0049	0.0049	0.0049	0.091	0.053	0.0056	0.0070	3.15E-07												
Annual Tota Emission fac For Propane AP-42 Se Converte Sulfur co For Natural AP-42 Se Hourly Emiss	al Heat Input R tors for per ection 1.5, Tab ed from Ib/kgal intent of propa Gas ection 1.4, Tab sions Ib/hr) =	tting (MMBtu/hr) = Single B ating (MMBtu/yr) = Hourly le 1.5-1 for Commercial Boi to Ib/MMBtu based on the ne per Table 4 of FR Vol 86 le 1.4-2, July 1998 for Sma Emission Factor Ib/MBtu x mission Factor Ib/MBtu x	Total Heat Inp lers (heat input propane heatin 5 No. 24, Febru Il Boilers (< 100 c Hourly Total H	ut Rating (MMBtu/hr capacities between g value of ary 8, 2021 0 MMBtu/hr) and cor leat Input Rating (M) x 8,760 (hr/yr) x 0.3 and 10 MMBtu 91.5 10 nverted from lb/MM MBtu/hr). 	y/hr), dated July 2008 MMBtu/kgal gr/100 scf Iscf to lb/MMBtu based		ting value of 1,	,020 Btu/scf.																								

Emissian	Emission	Emission Unit	Number	Single Unit	Annual	Total Heat I	nput Rating ¹				Emis	sion Factors	(lb/MMBtu)	2				Annual Emic	sions (tpy) ^{3,}	,4
Unit ID	Point ID	Description	of Units	Rating	Utilization	Total fieat I	iiput Katilig		Propane			Natural Ga	s		Maximum			Annual Enns	sions (tpy)	
0		Pesenpeion	0. 0	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)	CO ₂	CH ₄	N ₂ O	CO2	CH4	N ₂ O	CO2	CH ₄	N ₂ O	CO2	CH ₄	N ₂ O	CO ₂ e
LPH1	CV1	Ladle Preheaters	3	6	100%	18	157,680	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	10,928	0.52	0.10	10,972
LD1	CV1	Ladle Dryers	2	8	100%	16	140,160	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	9,713	0.46	0.093	9,753
TPH1	CV1	Tundish Preheaters	2	6	100%	12	105,120	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	7,285	0.35	0.070	7,314
TD1	CV1	Tundish Dryer	1	6	100%	6	52,560	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	3,643	0.17	0.035	3,657
TMD1	CV1	Tundish Mandril Dryer	1	1	100%	1	8,760	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	607	0.029	0.0058	610
SRDHTR1	CV1	Shroud Heater	1	1	100%	1	4,380	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	304	0.014	0.0029	305
MSAUXHT	CV1	Meltshop Comfort Heaters	20	0.4	50%	8	35,040	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	2,428	0.12	0.023	2,438
BF1	RMV1	Bit Furnace	1	0.225	100%	0.225	1,971	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	137	0.0065	0.0013	137
RMAUXHT	RMV1	Rolling Mill Comfort Heaters	20	0.4	50%	8	35,040	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	2,428	0.12	0.023	2,438
TORCH1	TORCH1	Cutting Torches	-	0.32	46%	0.32	1,285	138.60	6.61E-03	1.32E-03	116.98	2.20E-03	2.20E-04	138.60	6.61E-03	1.32E-03	89	0.0042	0.00085	89
	СV1	Proposed Caster Vent	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	35,048
	RMV1	Proposed Rolling Mill Vent	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,575
	TORCH1	Cutting Torches	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	89

¹ Hourly Total Heat Input Rating (MMBtu/hr) = Single Burner Rating (MMBtu/hr) x Number of Burners. Annual Total Heat Input Rating (MMBtu/yr) = Hourly Total Heat Input Rating (MMBtu/hr) x 8,760 (hr/yr) x Annual Utilization (%) / 100.

² Emission factor for CO₂ is obtained from 40 CFR Part 98, Table C-1 to Subpart C, December 2016, for Natural Gas and Propane. Emission factors for CH₄ and N₂O are obtained from 40 CFR Part 98, Table C-2 to Subpart C, December 2016, for Natural Gas and Petroleum Products (All fuel types in Table C-1).
³ CO₂e calculated using Global Warming Potentials (GWPs) from of 40 CFR Part 98, Table A-1, December 2014. CO₂ GWP = 1 CH₄ GWP = 25 N₂O GWP = 298

4 CO₂, CH₄, N₂O Annual Emissions (tpy) = Annual Total Heat Input Rating (MMBtu/yr) x Emission Factor Ib/MMBtu / 2,000 lb/ton). CO₂e Annual Emissions (tpy) = CO₂ GWP x CO₂ Annual Emissions (tpy) + CH₄ GWP x CH₄ Annual Emissions (tpy) + N₂O GWP x N₂O Annual Emissions (tpy).

		Emission Unit		Single Unit	Annual	Total Heat I	nput Rating		Emission	Hourly	Annual
	Point ID	Description	of Units	Rating (MMBtu/hr)	Utilization (%)	ı (MMBtu/hr)	(MMBtu/yr)	Species	Factors ² (lb/MMscf)	Emissions ³ (lb/hr)	Emissions ⁴ (tpy)
								2-Methylnaphthalene	2.40E-05	4.24E-07	1.86E-06
							-	3-Methylcholanthrene	1.80E-06	3.18E-08	1.39E-07
								7,12-Dimethylbenz(a)anthracene	1.60E-05	2.82E-07	1.24E-06
								Acenaphthene	1.80E-06	3.18E-08	1.39E-07
								Acenaphthylene	1.80E-06	3.18E-08	1.39E-07
								Anthracene	2.40E-06	4.24E-08	1.86E-07
								Benz(a)anthracene	1.80E-06	3.18E-08	1.39E-07
								Benzene	0.0021	3.71E-05	1.62E-04
								Benzo(a)pyrene	1.20E-06	2.12E-08	9.28E-08
								Benzo(b)fluoranthene	1.80E-06	3.18E-08	1.39E-07
								Benzo(g,h,i)perylene	1.20E-06	2.12E-08	9.28E-08
								Benzo(k)fluoranthene	1.80E-06	3.18E-08	1.39E-07
								Chrysene	1.80E-06	3.18E-08	1.39E-07
								Dibenzo(a,h)anthracene	1.20E-06	2.12E-08	9.28E-08
								Dichlorobenzene	1.20E-03	2.12E-05	9.28E-05
								Fluoranthene	3.00E-06	5.29E-08	2.32E-07
LPH1	CV1	Ladle	3	6	100%	18	157,680	Fluorene	2.80E-06	4.94E-08	2.16E-07
		Preheaters	-	-				Formaldehyde	0.075	1.32E-03	5.80E-03
								Hexane	1.8	3.18E-02	1.39E-01
								Indeno(1,2,3-cd)pyrene	1.80E-06	3.18E-08	1.39E-07
								Naphthalene	6.10E-04	1.08E-05	4.71E-05
								Phenanthrene	0.000017	3.00E-07	1.31E-06
								Pyrene	5.00E-06	8.82E-08	3.86E-07
								Toluene	0.0034	6.00E-05	2.63E-04
								Arsenic	2.00E-04	3.53E-06	1.55E-05
								Beryllium	1.20E-05	2.12E-07	9.28E-07
								Cadmium	1.10E-03	1.94E-05	8.50E-05
								Chromium	1.40E-03	2.47E-05	1.08E-04
								Cobalt	8.40E-05	1.48E-06	6.49E-06
								Manganese	3.80E-04	6.71E-06	2.94E-05
								Mercury	2.60E-04	4.59E-06	2.01E-05
								Molybdenum	1.10E-03	1.94E-05	8.50E-05
								Nickel	0.0021	3.71E-05	1.62E-04
							Γ	Selenium	2.40E-05	4.24E-07	1.86E-06

	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	3.76E-07	1.65E-06
								3-Methylcholanthrene	1.80E-06	2.82E-08	1.24E-07
								7,12-Dimethylbenz(a)anthracene	1.60E-05	2.51E-07	1.10E-06
								Acenaphthene	1.80E-06	2.82E-08	1.24E-07
								Acenaphthylene	1.80E-06	2.82E-08	1.24E-07
								Anthracene	2.40E-06	3.76E-08	1.65E-07
								Benz(a)anthracene	1.80E-06	2.82E-08	1.24E-07
								Benzene	0.0021	3.29E-05	1.44E-04
								Benzo(a)pyrene	1.20E-06	1.88E-08	8.24E-08
								Benzo(b)fluoranthene	1.80E-06	2.82E-08	1.24E-07
								Benzo(g,h,i)perylene	1.20E-06	1.88E-08	8.24E-08
								Benzo(k)fluoranthene	1.80E-06	2.82E-08	1.24E-07
								Chrysene	1.80E-06	2.82E-08	1.24E-07
								Dibenzo(a,h)anthracene	1.20E-06	1.88E-08	8.24E-08
								Dichlorobenzene	1.20E-03	1.88E-05	8.24E-05
								Fluoranthene	3.00E-06	4.71E-08	2.06E-07
LD1	CV1	Ladle Dryers	2	8	100%	16	140,160	Fluorene	2.80E-06	4.39E-08	1.92E-07
LDI	CV1	Edule Divers	2	0	100 /0	10	110,100	Formaldehyde	0.08	1.18E-03	5.15E-03
								Hexane	1.8	2.82E-02	1.24E-01
								Indeno(1,2,3-cd)pyrene	1.80E-06	2.82E-08	1.24E-07
								Naphthalene	6.10E-04	9.57E-06	4.19E-05
								Phenanthrene	1.70E-05	2.67E-07	1.17E-06
								Pyrene	5.00E-06	7.84E-08	3.44E-07
								Toluene	0.0034	5.33E-05	2.34E-04
								Arsenic	2.00E-04	3.14E-06	1.37E-05
								Beryllium	1.20E-05	1.88E-07	8.24E-07
								Cadmium	0.0011	1.73E-05	7.56E-05
								Chromium	0.0014	2.20E-05	9.62E-05
								Cobalt	8.40E-05	1.32E-06	5.77E-06
								Manganese	3.80E-04	5.96E-06	2.61E-05
								Mercury	2.60E-04	4.08E-06	1.79E-05
								Molybdenum	0.0011	1.73E-05	7.56E-05
								Nickel	0.0021	3.29E-05	1.44E-04
								Selenium	2.40E-05	3.76E-07	1.65E-06

Emission	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	2.82E-07	1.24E-06
								3-Methylcholanthrene	1.80E-06	2.12E-08	9.28E-08
								7,12-Dimethylbenz(a)anthracene	1.60E-05	1.88E-07	8.24E-07
								Acenaphthene	1.80E-06	2.12E-08	9.28E-08
								Acenaphthylene	1.80E-06	2.12E-08	9.28E-08
								Anthracene	2.40E-06	2.82E-08	1.24E-07
								Benz(a)anthracene	1.80E-06	2.12E-08	9.28E-08
								Benzene	0.0021	2.47E-05	1.08E-04
								Benzo(a)pyrene	1.20E-06	1.41E-08	6.18E-08
								Benzo(b)fluoranthene	1.80E-06	2.12E-08	9.28E-08
								Benzo(g,h,i)perylene	1.20E-06	1.41E-08	6.18E-08
								Benzo(k)fluoranthene	1.80E-06	2.12E-08	9.28E-08
								Chrysene	1.80E-06	2.12E-08	9.28E-08
								Dibenzo(a,h)anthracene	1.20E-06	1.41E-08	6.18E-08
								Dichlorobenzene	1.20E-03	1.41E-05	6.18E-05
								Fluoranthene	3.00E-06	3.53E-08	1.55E-07
TPH1	CV1	Tundish	2	6	100%	12	105 120	Fluorene	2.80E-06	3.29E-08	1.44E-07
IPHI	CVI	Preheaters	2	0	100%	12	105,120	Formaldehyde	0.08	8.82E-04	3.86E-03
								Hexane	1.8	2.12E-02	9.28E-02
								Indeno(1,2,3-cd)pyrene	1.80E-06	2.12E-08	9.28E-08
								Naphthalene	6.10E-04	7.18E-06	3.14E-05
								Phenanthrene	1.70E-05	2.00E-07	8.76E-07
								Pyrene	5.00E-06	5.88E-08	2.58E-07
								Toluene	0.0034	4.00E-05	1.75E-04
								Arsenic	2.00E-04	2.35E-06	1.03E-05
								Beryllium	1.20E-05	1.41E-07	6.18E-07
								Cadmium	0.0011	1.29E-05	5.67E-05
								Chromium	0.0014	1.65E-05	7.21E-05
								Cobalt	8.40E-05	9.88E-07	4.33E-06
								Manganese	3.80E-04	4.47E-06	1.96E-05
								Mercury	2.60E-04	3.06E-06	1.34E-05
								Molybdenum	0.0011	1.29E-05	5.67E-05
								Nickel	0.0021	2.47E-05	1.08E-04
								Selenium	2.40E-05	2.82E-07	1.24E-06

	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)	Species	(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	1.41E-07	6.18E-07
								3-Methylcholanthrene	1.80E-06	1.06E-08	4.64E-08
								7,12-Dimethylbenz(a)anthracene	1.60E-05	9.41E-08	4.12E-07
								Acenaphthene	1.80E-06	1.06E-08	4.64E-08
								Acenaphthylene	1.80E-06	1.06E-08	4.64E-08
								Anthracene	2.40E-06	1.41E-08	6.18E-08
								Benz(a)anthracene	1.80E-06	1.06E-08	4.64E-08
								Benzene	0.0021	1.24E-05	5.41E-05
								Benzo(a)pyrene	1.20E-06	7.06E-09	3.09E-08
								Benzo(b)fluoranthene	1.80E-06	1.06E-08	4.64E-08
								Benzo(g,h,i)perylene	1.20E-06	7.06E-09	3.09E-08
								Benzo(k)fluoranthene	1.80E-06	1.06E-08	4.64E-08
								Chrysene	1.80E-06	1.06E-08	4.64E-08
								Dibenzo(a,h)anthracene	1.20E-06	7.06E-09	3.09E-08
								Dichlorobenzene	1.20E-03	7.06E-06	3.09E-05
								Fluoranthene	3.00E-06	1.76E-08	7.73E-08
TD1	CV1	Tundish Dryer	1	6	100%	6	52,560	Fluorene	2.80E-06	1.65E-08	7.21E-08
IDI	CV1	runuisir Dryci	-	0	100 /0	0	52,500	Formaldehyde	0.08	4.41E-04	1.93E-03
								Hexane	1.8	1.06E-02	4.64E-02
								Indeno(1,2,3-cd)pyrene	1.80E-06	1.06E-08	4.64E-08
								Naphthalene	6.10E-04	3.59E-06	1.57E-05
								Phenanthrene	1.70E-05	1.00E-07	4.38E-07
								Pyrene	5.00E-06	2.94E-08	1.29E-07
								Toluene	0.0034	2.00E-05	8.76E-05
								Arsenic	2.00E-04	1.18E-06	5.15E-06
								Beryllium	1.20E-05	7.06E-08	3.09E-07
								Cadmium	0.0011	6.47E-06	2.83E-05
								Chromium	0.0014	8.24E-06	3.61E-05
								Cobalt	8.40E-05	4.94E-07	2.16E-06
								Manganese	3.80E-04	2.24E-06	9.79E-06
								Mercury	2.60E-04	1.53E-06	6.70E-06
								Molybdenum	0.0011	6.47E-06	2.83E-05
								Nickel	0.0021	1.24E-05	5.41E-05
								Selenium	2.40E-05	1.41E-07	6.18E-07

Emission	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	2.35E-08	1.03E-07
								3-Methylcholanthrene	1.80E-06	1.76E-09	7.73E-09
								7,12-Dimethylbenz(a)anthracene	1.60E-05	1.57E-08	6.87E-08
								Acenaphthene	1.80E-06	1.76E-09	7.73E-09
								Acenaphthylene	1.80E-06	1.76E-09	7.73E-09
								Anthracene	2.40E-06	2.35E-09	1.03E-08
								Benz(a)anthracene	1.80E-06	1.76E-09	7.73E-09
								Benzene	0.0021	2.06E-06	9.02E-06
								Benzo(a)pyrene	1.20E-06	1.18E-09	5.15E-09
								Benzo(b)fluoranthene	1.80E-06	1.76E-09	7.73E-09
								Benzo(g,h,i)perylene	1.20E-06	1.18E-09	5.15E-09
								Benzo(k)fluoranthene	1.80E-06	1.76E-09	7.73E-09
								Chrysene	1.80E-06	1.76E-09	7.73E-09
								Dibenzo(a,h)anthracene	1.20E-06	1.18E-09	5.15E-09
								Dichlorobenzene	1.20E-03	1.18E-06	5.15E-06
								Fluoranthene	3.00E-06	2.94E-09	1.29E-08
TMD1	CV1	Tundish Mandril	1	1	100%	1	8,760	Fluorene	2.80E-06	2.75E-09	1.20E-08
THE	CVI	Dryer	1	T	100 /0	1	0,700	Formaldehyde	0.08	7.35E-05	3.22E-04
								Hexane	1.8	1.76E-03	7.73E-03
								Indeno(1,2,3-cd)pyrene	1.80E-06	1.76E-09	7.73E-09
								Naphthalene	6.10E-04	5.98E-07	2.62E-06
								Phenanthrene	1.70E-05	1.67E-08	7.30E-08
								Pyrene	5.00E-06	4.90E-09	2.15E-08
								Toluene	0.0034	3.33E-06	1.46E-05
								Arsenic	2.00E-04	1.96E-07	8.59E-07
								Beryllium	1.20E-05	1.18E-08	5.15E-08
								Cadmium	0.0011	1.08E-06	4.72E-06
								Chromium	0.0014	1.37E-06	6.01E-06
								Cobalt	8.40E-05	8.24E-08	3.61E-07
								Manganese	3.80E-04	3.73E-07	1.63E-06
								Mercury	2.60E-04	2.55E-07	1.12E-06
								Molybdenum	0.0011	1.08E-06	4.72E-06
								Nickel	0.0021	2.06E-06	9.02E-06
								Selenium	2.40E-05	2.35E-08	1.03E-07

Emission	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	1.18E-08	5.15E-08
								3-Methylcholanthrene	1.80E-06	8.82E-10	3.86E-09
								7,12-Dimethylbenz(a)anthracene	1.60E-05	7.84E-09	3.44E-08
								Acenaphthene	1.80E-06	8.82E-10	3.86E-09
								Acenaphthylene	1.80E-06	8.82E-10	3.86E-09
								Anthracene	2.40E-06	1.18E-09	5.15E-09
								Benz(a)anthracene	1.80E-06	8.82E-10	3.86E-09
								Benzene	0.0021	1.03E-06	4.51E-06
								Benzo(a)pyrene	1.20E-06	5.88E-10	2.58E-09
								Benzo(b)fluoranthene	1.80E-06	8.82E-10	3.86E-09
								Benzo(g,h,i)perylene	1.20E-06	5.88E-10	2.58E-09
								Benzo(k)fluoranthene	1.80E-06	8.82E-10	3.86E-09
								Chrysene	1.80E-06	8.82E-10	3.86E-09
								Dibenzo(a,h)anthracene	1.20E-06	5.88E-10	2.58E-09
								Dichlorobenzene	1.20E-03	5.88E-07	2.58E-06
								Fluoranthene	3.00E-06	1.47E-09	6.44E-09
SRDHTR1	CV1	Shroud Heater	1	1	100%	0.5	4,380	Fluorene	2.80E-06	1.37E-09	6.01E-09
SILDITIKI	CVI	Shiroud ricater	-	I	100 /0	0.5	1,500	Formaldehyde	0.08	3.68E-05	1.61E-04
								Hexane	1.8	8.82E-04	3.86E-03
								Indeno(1,2,3-cd)pyrene	1.80E-06	8.82E-10	3.86E-09
								Naphthalene	6.10E-04	2.99E-07	1.31E-06
								Phenanthrene	1.70E-05	8.33E-09	3.65E-08
								Pyrene	5.00E-06	2.45E-09	1.07E-08
								Toluene	0.0034	1.67E-06	7.30E-06
								Arsenic	2.00E-04	9.80E-08	4.29E-07
								Beryllium	1.20E-05	5.88E-09	2.58E-08
								Cadmium	0.0011	5.39E-07	2.36E-06
								Chromium	0.0014	6.86E-07	3.01E-06
								Cobalt	8.40E-05	4.12E-08	1.80E-07
								Manganese	3.80E-04	1.86E-07	8.16E-07
								Mercury	2.60E-04	1.27E-07	5.58E-07
								Molybdenum	0.0011	5.39E-07	2.36E-06
								Nickel	0.0021	1.03E-06	4.51E-06
								Selenium	2.40E-05	1.18E-08	5.15E-08

Emission	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)		(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	1.88E-07	4.12E-07
								3-Methylcholanthrene	1.80E-06	1.41E-08	3.09E-08
								7,12-Dimethylbenz(a)anthracene	1.60E-05	1.25E-07	2.75E-07
								Acenaphthene	1.80E-06	1.41E-08	3.09E-08
								Acenaphthylene	1.80E-06	1.41E-08	3.09E-08
								Anthracene	2.40E-06	1.88E-08	4.12E-08
								Benz(a)anthracene	1.80E-06	1.41E-08	3.09E-08
								Benzene	0.0021	1.65E-05	3.61E-05
								Benzo(a)pyrene	1.20E-06	9.41E-09	2.06E-08
								Benzo(b)fluoranthene	1.80E-06	1.41E-08	3.09E-08
								Benzo(g,h,i)perylene	1.20E-06	9.41E-09	2.06E-08
								Benzo(k)fluoranthene	1.80E-06	1.41E-08	3.09E-08
								Chrysene	1.80E-06	1.41E-08	3.09E-08
								Dibenzo(a,h)anthracene	1.20E-06	9.41E-09	2.06E-08
								Dichlorobenzene	1.20E-03	9.41E-06	2.06E-05
		Meltshop						Fluoranthene	3.00E-06	2.35E-08	5.15E-08
MSAUXHT	CV1	Comfort	20	0.4	50%	8	35,040	Fluorene	2.80E-06	2.20E-08	4.81E-08
MJAOATT	CVI	Heaters	20	0.1	5070	0	55,010	Formaldehyde	0.08	5.88E-04	1.29E-03
		ricaters						Hexane	1.8	1.41E-02	3.09E-02
								Indeno(1,2,3-cd)pyrene	1.80E-06	1.41E-08	3.09E-08
								Naphthalene	6.10E-04	4.78E-06	1.05E-05
								Phenanthrene	1.70E-05	1.33E-07	2.92E-07
								Pyrene	5.00E-06	3.92E-08	8.59E-08
								Toluene	0.0034	2.67E-05	5.84E-05
								Arsenic	2.00E-04	1.57E-06	3.44E-06
								Beryllium	1.20E-05	9.41E-08	2.06E-07
								Cadmium	0.0011	8.63E-06	1.89E-05
								Chromium	0.0014	1.10E-05	2.40E-05
								Cobalt	8.40E-05	6.59E-07	1.44E-06
								Manganese	3.80E-04	2.98E-06	6.53E-06
								Mercury	2.60E-04	2.04E-06	4.47E-06
								Molybdenum	0.0011	8.63E-06	1.89E-05
								Nickel	0.0021	1.65E-05	3.61E-05
								Selenium	2.40E-05	1.88E-07	4.12E-07

Emission	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)	•	(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	5.29E-09	2.32E-08
								3-Methylcholanthrene	1.80E-06	3.97E-10	1.74E-09
								7,12-Dimethylbenz(a)anthracene	1.60E-05	3.53E-09	1.55E-08
								Acenaphthene	1.80E-06	3.97E-10	1.74E-09
								Acenaphthylene	1.80E-06	3.97E-10	1.74E-09
								Anthracene	2.40E-06	5.29E-10	2.32E-09
								Benz(a)anthracene	1.80E-06	3.97E-10	1.74E-09
								Benzene	0.0021	4.63E-07	2.03E-06
								Benzo(a)pyrene	1.20E-06	2.65E-10	1.16E-09
								Benzo(b)fluoranthene	1.80E-06	3.97E-10	1.74E-09
								Benzo(g,h,i)perylene	1.20E-06	2.65E-10	1.16E-09
								Benzo(k)fluoranthene	1.80E-06	3.97E-10	1.74E-09
								Chrysene	1.80E-06	3.97E-10	1.74E-09
								Dibenzo(a,h)anthracene	1.20E-06	2.65E-10	1.16E-09
								Dichlorobenzene	1.20E-03	2.65E-07	1.16E-06
								Fluoranthene	3.00E-06	6.62E-10	2.90E-09
BF1	RMV1	Bit Furnace	1	0.225	100%	0	1,971	Fluorene	2.80E-06	6.18E-10	2.71E-09
DIT	KINV1	DICTUITACE	T	0.225	100 %	0	1,971	Formaldehyde	0.08	1.65E-05	7.25E-05
								Hexane	1.8	3.97E-04	1.74E-03
								Indeno(1,2,3-cd)pyrene	1.80E-06	3.97E-10	1.74E-09
								Naphthalene	6.10E-04	1.35E-07	5.89E-07
								Phenanthrene	1.70E-05	3.75E-09	1.64E-08
								Pyrene	5.00E-06	1.10E-09	4.83E-09
								Toluene	0.0034	7.50E-07	3.29E-06
								Arsenic	2.00E-04	4.41E-08	1.93E-07
								Beryllium	1.20E-05	2.65E-09	1.16E-08
								Cadmium	0.0011	2.43E-07	1.06E-06
								Chromium	0.0014	3.09E-07	1.35E-06
								Cobalt	8.40E-05	1.85E-08	8.12E-08
								Manganese	3.80E-04	8.38E-08	3.67E-07
								Mercury	2.60E-04	5.74E-08	2.51E-07
								Molybdenum	0.0011	2.43E-07	1.06E-06
								Nickel	0.0021	4.63E-07	2.03E-06
								Selenium	2.40E-05	5.29E-09	2.32E-08

Emission	Emission	Emission Unit	Number	Single Unit Rating	Annual Utilization	Total Heat I	nput Rating	Species	Emission Factors ²	Hourly Emissions ³	Annual Emissions ⁴
Unit ID	Point ID	Description	of Units	(MMBtu/hr)		(MMBtu/hr)	(MMBtu/yr)	Species	(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	2.40E-05	1.88E-07	4.12E-07
								3-Methylcholanthrene	1.80E-06	1.41E-08	3.09E-08
								7,12-Dimethylbenz(a)anthracene	1.60E-05	1.25E-07	2.75E-07
								Acenaphthene	1.80E-06	1.41E-08	3.09E-08
								Acenaphthylene	1.80E-06	1.41E-08	3.09E-08
								Anthracene	2.40E-06	1.88E-08	4.12E-08
								Benz(a)anthracene	1.80E-06	1.41E-08	3.09E-08
								Benzene	0.0021	1.65E-05	3.61E-05
								Benzo(a)pyrene	1.20E-06	9.41E-09	2.06E-08
								Benzo(b)fluoranthene	1.80E-06	1.41E-08	3.09E-08
								Benzo(g,h,i)perylene	1.20E-06	9.41E-09	2.06E-08
								Benzo(k)fluoranthene	1.80E-06	1.41E-08	3.09E-08
								Chrysene	1.80E-06	1.41E-08	3.09E-08
								Dibenzo(a,h)anthracene	1.20E-06	9.41E-09	2.06E-08
								Dichlorobenzene	1.20E-03	9.41E-06	2.06E-05
		Rolling Mill						Fluoranthene	3.00E-06	2.35E-08	5.15E-08
RMAUXHT	RMV1	Comfort	20	0.4	50%	8	35,040	Fluorene	2.80E-06	2.20E-08	4.81E-08
RMAUAITI	KINV1	Heaters	20	0.4	50%	0	55,040	Formaldehyde	0.08	5.88E-04	1.29E-03
		nealers						Hexane	1.8	1.41E-02	3.09E-02
								Indeno(1,2,3-cd)pyrene	1.80E-06	1.41E-08	3.09E-08
								Naphthalene	6.10E-04	4.78E-06	1.05E-05
								Phenanthrene	1.70E-05	1.33E-07	2.92E-07
								Pyrene	5.00E-06	3.92E-08	8.59E-08
								Toluene	0.0034	2.67E-05	5.84E-05
								Arsenic	2.00E-04	1.57E-06	3.44E-06
								Beryllium	1.20E-05	9.41E-08	2.06E-07
								Cadmium	0.0011	8.63E-06	1.89E-05
								Chromium	0.0014	1.10E-05	2.40E-05
								Cobalt	8.40E-05	6.59E-07	1.44E-06
								Manganese	3.80E-04	2.98E-06	6.53E-06
								Mercury	2.60E-04	2.04E-06	4.47E-06
								Molybdenum	0.0011	8.63E-06	1.89E-05
								Nickel	0.0021	1.65E-05	3.61E-05
							Selenium	2.40E-05	1.88E-07	4.12E-07	

		Emission Unit		Single Unit	Annual Utilization	Total Heat I	nput Rating	Crossing	Emission	Hourly	Annual
Unit ID	Point ID	Description	of Units	Rating (MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)	Species	Factors ² (lb/MMscf)	Emissions ³ (lb/hr)	Emissions ⁴ (tpy)
								2-Methylnaphthalene	2.40E-05	7.56E-09	1.51E-08
								3-Methylcholanthrene	1.80E-06	5.67E-10	1.13E-09
								7,12-Dimethylbenz(a)anthracene	1.60E-05	5.04E-09	1.01E-08
								Acenaphthene	1.80E-06	5.67E-10	1.13E-09
								Acenaphthylene	1.80E-06	5.67E-10	1.13E-09
								Anthracene	2.40E-06	7.56E-10	1.51E-09
								Benz(a)anthracene	1.80E-06	5.67E-10	1.13E-09
								Benzene	0.0021	6.61E-07	1.32E-06
								Benzo(a)pyrene	1.20E-06	3.78E-10	7.56E-10
								Benzo(b)fluoranthene	1.80E-06	5.67E-10	1.13E-09
								Benzo(g,h,i)perylene	1.20E-06	3.78E-10	7.56E-10
								Benzo(k)fluoranthene	1.80E-06	5.67E-10	1.13E-09
								Chrysene	1.80E-06	5.67E-10	1.13E-09
								Dibenzo(a,h)anthracene	1.20E-06	3.78E-10	7.56E-10
								Dichlorobenzene	1.20E-03	3.78E-07	7.56E-07
								Fluoranthene	3.00E-06	9.45E-10	1.89E-09
TORCH1		Cutting Torches	-	0.32	46%	0.32	1,284.66	Fluorene	2.80E-06	8.82E-10	1.76E-09
TURCHI	TORCHI	cutting forches	-	0.52	40%	0.52	1,204.00	Formaldehyde	0.08	2.36E-05	4.72E-05
								Hexane	1.8	5.67E-04	1.13E-03
								Indeno(1,2,3-cd)pyrene	1.80E-06	5.67E-10	1.13E-09
								Naphthalene	6.10E-04	1.92E-07	3.84E-07
								Phenanthrene	1.70E-05	5.35E-09	1.07E-08
								Pyrene	5.00E-06	1.57E-09	3.15E-09
								Toluene	0.0034	1.07E-06	2.14E-06
								Arsenic	2.00E-04	6.30E-08	1.26E-07
								Beryllium	1.20E-05	3.78E-09	7.56E-09
								Cadmium	0.0011	3.46E-07	6.93E-07
								Chromium	0.0014	4.41E-07	8.82E-07
							Γ	Cobalt	8.40E-05	2.64E-08	5.29E-08
								Manganese	3.80E-04	1.20E-07	2.39E-07
								Mercury	2.60E-04	8.19E-08	1.64E-07
								Molybdenum	0.0011	3.46E-07	6.93E-07
							Γ	Nickel	0.0021	6.61E-07	1.32E-06
								Selenium	2.40E-05	7.56E-09	1.51E-08

		Emission Unit		Single Unit		Total Heat I	nput Rating		Emission	Hourly	Annual
Unit ID		Description	of Units	Rating	Utilization	1		Species	Factors ²	Emissions ³	Emissions
	Point ID	Description	of offics	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	-	1.44E-06	5.87E-06
								3-Methylcholanthrene	-	1.08E-07	4.41E-07
								7,12-Dimethylbenz(a)anthracene	-	9.57E-07	3.92E-06
								Acenaphthene	-	1.08E-07	4.41E-07
								Acenaphthylene	-	1.08E-07	4.41E-07
								Anthracene	-	1.44E-07	5.87E-07
								Benz(a)anthracene	-	1.08E-07	4.41E-07
								Benzene	-	1.26E-04	5.14E-04
								Benzo(a)pyrene	-	7.18E-08	2.94E-07
								Benzo(b)fluoranthene	-	1.08E-07	4.41E-07
								Benzo(g,h,i)perylene	-	7.18E-08	2.94E-07
							ſ	Benzo(k)fluoranthene	-	1.08E-07	4.41E-07
							ſ	Chrysene	-	1.08E-07	4.41E-02
	Dro						ſ	Dibenzo(a,h)anthracene	-	7.18E-08	2.94E-0
							ſ	Dichlorobenzene	-	7.18E-05	2.94E-04
		Dreneed						Fluoranthene	-	1.79E-07	7.34E-0
-	CV1	Proposed	-	-	-	-	-	Fluorene	-	1.67E-07	6.85E-0
		Caster Vent						Formaldehyde	-	4.49E-03	1.84E-0
								Hexane	-	1.08E-01	4.41E-0
								Indeno(1,2,3-cd)pyrene	-	1.08E-07	4.41E-0
							-	Naphthalene	-	3.65E-05	1.49E-04
							-	Phenanthrene	-	1.02E-06	4.16E-00
							-	Pyrene	-	2.99E-07	1.22E-00
							-	Toluene	-	2.03E-04	8.32E-04
							l l	Arsenic	-	1.20E-05	4.90E-0
							l l	Beryllium	-	7.18E-07	2.94E-0
							l l	Cadmium	-	6.58E-05	2.69E-04
							l l	Chromium	-	8.37E-05	3.43E-04
							F F	Cobalt	-	5.02E-06	2.06E-0
							F F	Manganese	-	2.27E-05	9.30E-0
							F F	Mercury	-	1.55E-05	6.36E-0
							F F	Molybdenum	-	6.58E-05	2.69E-04
							F	Nickel	-	1.26E-04	5.14E-04
							F	Selenium	-	1.44E-06	5.87E-06

Emission	Emission	Emission Unit	Number	Single Unit	Annual	Total Heat I	nput Rating		Emission	Hourly	Annual
Unit ID	Point ID	Description	of Units	Rating	Utilization	1		Species	Factors ²	Emissions ³	Emissions
				(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	-	1.94E-07	4.35E-07
								3-Methylcholanthrene	-	1.45E-08	3.27E-08
								7,12-Dimethylbenz(a)anthracene	-	1.29E-07	2.90E-07
								Acenaphthene	-	1.45E-08	3.27E-08
								Acenaphthylene	-	1.45E-08	3.27E-0
								Anthracene	-	1.94E-08	4.35E-0
								Benz(a)anthracene	-	1.45E-08	3.27E-0
								Benzene	-	1.69E-05	3.81E-0
								Benzo(a)pyrene	-	9.68E-09	2.18E-0
								Benzo(b)fluoranthene	-	1.45E-08	3.27E-0
								Benzo(g,h,i)perylene	-	9.68E-09	2.18E-0
								Benzo(k)fluoranthene	-	1.45E-08	3.27E-0
								Chrysene	-	1.45E-08	3.27E-0
								Dibenzo(a,h)anthracene	-	9.68E-09	2.18E-0
								Dichlorobenzene	-	9.68E-06	2.18E-0
		Proposed						Fluoranthene	-	2.42E-08	5.44E-0
-	RMV1	Rolling Mill	-	-	-	-	-	Fluorene	-	2.26E-08	5.08E-0
		Vent						Formaldehyde	-	6.05E-04	1.36E-0
								Hexane	-	1.45E-02	3.27E-0
								Indeno(1,2,3-cd)pyrene	-	1.45E-08	3.27E-0
								Naphthalene	-	4.92E-06	1.11E-0
								Phenanthrene	-	1.37E-07	3.08E-0
								Pyrene	-	4.03E-08	9.07E-0
								Toluene	-	2.74E-05	6.17E-0
								Arsenic	-	1.61E-06	3.63E-0
								Beryllium	-	9.68E-08	2.18E-0
								Cadmium	-	8.87E-06	2.00E-0
								Chromium	-	1.13E-05	2.54E-0
								Cobalt	-	6.77E-07	1.52E-0
								Manganese	-	3.06E-06	6.89E-0
							F	Mercury	-	2.10E-06	4.72E-0
							F	Molybdenum	-	8.87E-06	2.00E-0
							Ē	Nickel	-	1.69E-05	3.81E-0
								Selenium	-	1.94E-07	4.35E-0

Table A-8c. HAP Emissions - Natural Gas Combustion

		Emission Unit		Single Unit	Annual	Total Heat I	nput Rating		Emission	Hourly	Annual
Unit ID	Point ID	Description	of Units	Rating	Utilization			Species	Factors ²	Emissions ³	Emissions
	Folit ID	Description	or offics	(MMBtu/hr)	(%)	(MMBtu/hr)	(MMBtu/yr)		(lb/MMscf)	(lb/hr)	(tpy)
								2-Methylnaphthalene	-	7.56E-09	1.51E-0
								3-Methylcholanthrene	-	5.67E-10	1.13E-0
								7,12-Dimethylbenz(a)anthracene	-	5.04E-09	1.01E-08
								Acenaphthene	-	5.67E-10	1.13E-0
								Acenaphthylene	-	5.67E-10	1.13E-0
								Anthracene	-	7.56E-10	1.51E-0
								Benz(a)anthracene	-	5.67E-10	1.13E-0
								Benzene	-	6.61E-07	1.32E-0
								Benzo(a)pyrene	-	3.78E-10	7.56E-1
								Benzo(b)fluoranthene	-	5.67E-10	1.13E-0
								Benzo(g,h,i)perylene	-	3.78E-10	7.56E-1
								Benzo(k)fluoranthene	-	5.67E-10	1.13E-0
								Chrysene	-	5.67E-10	1.13E-0
								Dibenzo(a,h)anthracene	-	3.78E-10	7.56E-1
								Dichlorobenzene	-	3.78E-07	7.56E-0
		Cutting						Fluoranthene	-	9.45E-10	1.89E-0
-	TORCH1	Torches	-	-	-	-	-	Fluorene	-	8.82E-10	1.76E-0
		Torcnes						Formaldehyde	-	2.36E-05	4.72E-0
								Hexane	-	5.67E-04	1.13E-0
								Indeno(1,2,3-cd)pyrene	-	5.67E-10	1.13E-0
								Naphthalene	-	1.92E-07	3.84E-0
								Phenanthrene	-	5.35E-09	1.07E-0
								Pyrene	-	1.57E-09	3.15E-0
								Toluene	-	1.07E-06	2.14E-0
								Arsenic	-	6.30E-08	1.26E-0
								Beryllium	-	3.78E-09	7.56E-0
								Cadmium	-	3.46E-07	6.93E-0
							[Chromium	-	4.41E-07	8.82E-0
								Cobalt	-	2.64E-08	5.29E-0
								Manganese	-	1.20E-07	2.39E-0
								Mercury	-	8.19E-08	1.64E-0
								Molybdenum	-	3.46E-07	6.93E-0
								Nickel	-	6.61E-07	1.32E-0
								Selenium	-	7.56E-09	1.51E-0

Hourly Total Heat Input Rating (MMBtu/hr) = Single Burner Rating (MMBtu/hr) x Number of Burners. Annual Total Heat Input Rating (MMBtu/yr) = Hourly Total Heat Input Rating (MMBtu/hr) x 8,760 (hr/yr) x Annual Utilization (%) / 100.
 Emission factors are from AP-42 Section 1.4, Tables 1.4-3 and 1.4-4, July 1998.

³ Hourly Emissions (lb/hr) = Hourly Total Heat Input Rating (MMBtu/hr) x Emission Factor (lb/MMscf) / 1,020 (Btu/scf).
 ⁴ Annual Emissions (tpy) =Annual Total Heat Input Rating (MMBtu/yr) x Emission Factor (lb/MMscf) / 1,020 (Btu/scf) / 2,000 (lb/ton).

Table A-9. Emissions - Binder Usage

Emission	Emission	Emission Unit	Binder	Usage			on Fact Ib bind					y Emiss (lb/hr)				Annua	al Emiss (tpy)	ions ⁴	
Unit ID	Point ID	Description	Hourly (lb/hr)	Annual (ton/yr)		Total PM ₁₀	Total PM _{2.5}	со	voc	Total PM		Total PM _{2.5}	rn i	VOC	Total PM	Total PM ₁₀	Total PM _{2.5}	СО	voc
LB1	CV1	Refractory Binder Usage - Ladle	2.12	7.52	0.010	0.010	0.010	0.15	0.02	0.021	0.021	0.021	0.32	0.042	0.075	0.075	0.075	1.13	0.15
TB1	CV1	Refractory Binder Usage - Tundish	1.28	4.51	0.010	0.010	0.010	0.15	0.02	0.013	0.013	0.013	0.19	0.026	0.045	0.045	0.045	0.68	0.090
CV1	CV1	Caster Vent	-	-	-	-	-	-	-	0.034	0.034	0.034	0.51	0.068	0.12	0.12	0.12	1.80	0.24

Emission factors for PM, PM₁₀, PM_{2.5}, and CO based on process experience from other CMC micro-mills.
 Emission factors for VOC per estimated percent of binder resin pyrolyzed/oxidized.
 Hourly Emissions lb/hr) = Hourly Binder Usage lb/hr) x Emission Factor lb/lb binder).
 Annual Emissions (tpy) = Annual Binder Usage (tpy) x Emission Factor lb/lb binder).

Table A-10. Emissions - Material Handling

	Emission	Transfer Description	Material	Fine Content		Through	out	Moisture Content	Control	Control Efficiency	Emi	ssion Fact (lb/ton)	tor ¹	Hour	rly Emissi (lb/hr)	ons ²	Annu	ial Emissi (tpy)	ons ³
Unit ID	Point ID		Material	(%)	(%)	(ton/hr)	(tpy)	(%)	Application	(%)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	Scrap	1	-	830	3,380,000	1	Partial Enclosure	50	4.95E-05	2.34E-05	3.54E-06	4.11E-02	1.94E-02	2.94E-03	8.36E-02	3.96E-02	5.99E-03
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	Scrap	1	-	330	2,145,000	1	None	0	9.90E-05	4.68E-05	7.09E-06	3.27E-02	1.54E-02	2.34E-03	1.06E-01	5.02E-02	7.60E-03
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	Scrap	1	-	110	715,000	1	None	0	9.90E-05	4.68E-05	7.09E-06	1.09E-02	5.15E-03	7.80E-04	3.54E-02	1.67E-02	2.53E-03
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	Scrap	1	-	110	715,000	1	None	0	9.90E-05	4.68E-05	7.09E-06	1.09E-02	5.15E-03	7.80E-04	3.54E-02	1.67E-02	2.53E-03
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	Fluxing Agent	7	-	30	30,695	1	Full Enclosure	80	1.39E-04	6.55E-05	9.92E-06	4.16E-03	1.97E-03	2.98E-04	2.13E-03	1.01E-03	1.52E-04
TR81	TR81	Outside Drop Points, Alloy Aggregate	Alloy Aggregate	1	-	60	9,800	1	Partial Enclosure	50	4.95E-05	2.34E-05	3.54E-06	2.97E-03	1.40E-03	2.13E-04	2.42E-04	1.15E-04	1.74E-05
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	Removed Refractory / Other Materials	10	-	25	2,800	1	Full Enclosure	80	1.98E-04	9.36E-05	1.42E-05	4.95E-03	2.34E-03	3.54E-04	2.77E-04	1.31E-04	1.98E-05
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other Materials	Removed Refractory / Other Materials	10	-	25	2,800	1	None	0	9.90E-04	4.68E-04	7.09E-05	2.47E-02	1.17E-02	1.77E-03	1.39E-03	6.55E-04	9.92E-05
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	Slag	2	-	100	182,500	12	None	0	6.11E-06	2.89E-06	4.37E-07	6.11E-04	2.89E-04	4.37E-05	5.57E-04	2.63E-04	3.99E-05
TR11B1	TR11B1	Drop from Loader to SPP Feed Hopper, Slag	Slag	2	100%	100	182,500	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	2.84E-03	1.34E-03	2.04E-04	2.59E-03	1.23E-03	1.86E-04
TR11B2	TR11B2	Drop from SPP Feed Hopper to SPP Grizzly	Slag	2	100%	100	182,500	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	2.84E-03	1.34E-03	2.04E-04	2.59E-03	1.23E-03	1.86E-04
TR11B3	TR11B3	Drop from SPP Grizzly to SPP Feed Belt	Slag	2	100%	100	182,500	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	2.84E-03	1.34E-03	2.04E-04	2.59E-03	1.23E-03	1.86E-04
TR11B4	TR11B4	Drop from SPP Feed Belt to SPP Metallics Conveyor	Slag	1	15%	15	27,375	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	2.13E-04	1.01E-04	1.53E-05	1.95E-04	9.20E-05	1.39E-05
TR11B5	TR11B5	Drop from SPP Metallics Conveyor to SPP Triple Deck Metallics Screen	Slag	1	15%	15	27,375	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	2.13E-04	1.01E-04	1.53E-05	1.95E-04	9.20E-05	1.39E-05
TR11B6	TR11B6	Drop from SPP Feed Belt to SPP Triple Deck Non-Metallics Screen	Slag	2	85%	85	155,125	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	2.42E-03	1.14E-03	1.73E-04	2.20E-03	1.04E-03	1.58E-04
MTLSCR	MTLSCR	SPP Triple Deck Metallics Screen	Slag	1	15%	15	27,375	4	Moisture Content of Material	-	2.20E-05	7.40E-06	5.00E-07	3.30E-04	1.11E-04	7.50E-06	3.01E-04	1.01E-04	6.84E-06
NOMTLSCR	NOMTLSC R	SPP Triple Deck Non-Metallics Screen	Slag	2	85%	85	155,125	4	Moisture Content of Material	-	4.40E-05	1.48E-05	1.00E-06	3.74E-03	1.26E-03	8.50E-05	3.41E-03	1.15E-03	7.76E-05
TR11B7	TR11B7	Drop from SPP Triple Deck Metallics Screen to Stacking Conveyor No. 1	Slag	1	3%	3	5,475	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	4.26E-05	2.02E-05	3.05E-06	3.89E-05	1.84E-05	2.79E-06
TR11B8	TR11B8	Drop from SPP Triple Deck Metallics Screen to Stacking Conveyor No. 2	Slag	1	3%	3	5,475	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	4.26E-05	2.02E-05	3.05E-06	3.89E-05	1.84E-05	2.79E-06
TR11B9	TR11B9	Drop from SPP Triple Deck Non- Metallics Screen to Stacking Conveyor No. 3	Slag	2	43%	43	78,475	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	1.22E-03	5.78E-04	8.75E-05	1.12E-03	5.27E-04	7.99E-05

Table A-10. Emissions - Material Handling

Emission	Emission	Transfer Description	Material	Fine Content		Throughp	ut	Moisture Content	Control	Control Efficiency	Emi	ssion Fac (lb/ton)	tor ¹	Hou	rly Emissi (lb/hr)	ons ²	Annı	ual Emissi (tpy)	ions ³
Unit ID	Point ID		Hatenar	(%)	(%)	(ton/hr)	(tpy)	(%)	Application	(%)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM ₂₅	Total PM	Total PM ₁₀	Total PM _{2.5}
TR11B10	TR11B10	Drop from SPP Triple Deck Non- Metallics Screen to Stacking Conveyor No. 4	Slag	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	10	2.04E-06	3.98E-04	1.88E-04	2.85E-05		1.72E-04	
TR11B11	TR11B11	Drop from SPP Triple Deck Non- Metallics Screen to Stacking Conveyor No. 5	Slag	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR11B12	TR11B12	Drop from SPP Triple Deck Non- Metallics Screen to Stacking Conveyor No. 6	Slag	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR11B13	TR11B13	Drop from Stacking Conveyor No. 1 to SPP C-Scrap Pile	SPP Product	1	3%	3	5,475	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	4.26E-05	2.02E-05	3.05E-06	3.89E-05	1.84E-05	2.79E-0
TR11B14	TR11B14	Drop from Stacking Conveyor No. 2 to SPP B-Scrap Pile	SPP Product	1	3%	3	5,475	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	4.26E-05	2.02E-05	3.05E-06	3.89E-05	1.84E-05	2.79E-0
TR11B15	TR11B15	Drop from SPP Triple Deck Metallics Screen to SPP A-Scrap Pile	SPP Product	1	9%	9	16,425	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	1.28E-04	6.05E-05	9.16E-06	1.17E-04	5.52E-05	8.36E-0
TR11B16	TR11B16	Drop from Stacking Conveyor No. 3 to SPP No. 1 Products Pile	SPP Product	2	43%	43	78,475	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	1.22E-03	5.78E-04	8.75E-05	1.12E-03	5.27E-04	7.99E-0
TR11B17	TR11B17	Drop from Stacking Conveyor No. 4 to SPP No. 3 Products Pile	SPP Product	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR11B18	TR11B18	Drop from Stacking Conveyor No. 5 to SPP Overs Pile	SPP Product	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR11B19	TR11B19	Drop from Stacking Conveyor No. 6 to SPP No. 2 Products Pile	SPP Product	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR11B20	TR11B20	Drop from SPP A-Scrap Pile to Trucks	SPP Product	1	9%	9	16,425	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	1.28E-04	6.05E-05	9.16E-06	1.17E-04	5.52E-05	8.36E-0
TR11B21	TR11B21	Drop from SPP B-Scrap Pile to Trucks	SPP Product	1	3%	3	5,475	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	4.26E-05	2.02E-05	3.05E-06	3.89E-05	1.84E-05	2.79E-0
TR11B22	TR11B22	Drop from SPP C-Scrap Pile to Trucks	SPP Product	1	3%	3	5,475	4	Moisture Content of Material	-	1.42E-05	6.72E-06	1.02E-06	4.26E-05	2.02E-05	3.05E-06	3.89E-05	1.84E-05	2.79E-0
TR11B23	TR11B23	Drop from SPP No. 1 Products Pile to Trucks	SPP Product	2	43%	43	78,475	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	1.22E-03	5.78E-04	8.75E-05	1.12E-03	5.27E-04	7.99E-0
TR11B24	TR11B24	Drop from SPP No. 2 Products Pile to Trucks	SPP Product	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR11B25	TR11B25	Drop from SPP No. 3 Products Pile to Trucks	SPP Product	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR11B26	TR11B26	Drop from SPP Overs Pile to Trucks	SPP Product	2	14%	14	25,550	4	Moisture Content of Material	-	2.84E-05	1.34E-05	2.04E-06	3.98E-04	1.88E-04	2.85E-05	3.63E-04	1.72E-04	2.60E-0
TR131	TR131	Outside Drop Points, Residual Scrap Pile	Residual Scrap	2	-	25	2,800	1	None	0	1.98E-04	9.36E-05	1.42E-05	4.95E-03	2.34E-03	3.54E-04	2.77E-04	1.31E-04	1.98E-0
TR141	TR141	Outside Drop Points, Mill Scale Pile	Mill Scale	15	-	60	9,800	1	Partial Enclosure	50	7.42E-04	3.51E-04	5.32E-05	4.45E-02	2.11E-02	3.19E-03	3.64E-03	1.72E-03	2.61E-04
		Total	Emissions			1			1	1	1	1	T				0.29	0.14	0.021

¹ Emission factors for material handling per AP-42, Section 13.2.4, November 2006.

(<u>U</u>)13

where

Table A-10. Emissions - Material Handling

Emission		Transfer Description	Material	Fine Content		Through	out	Moisture Content	Control	Control Efficiency		ssion Fac (lb/ton)	tor ¹	Hour	rly Emissi (lb/hr)	ons ²	Annu	ial Emissi (tpy)	ons ³
Unit ID	Point ID			(%)	(%)	(ton/hr)	(tpy)	(%)	Application	(%)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
<u></u>	E = k(0.0	$\frac{(5)}{\left(\frac{M}{2}\right)^{14}}$			7.12	0.35 speed (mph) ological data d		nsburg Airport s	tation for period be	tween 2017 and	1 2021.								

 Yes
 Per meteorological data collected at Martinsburg Airport station for period between 2017 and 2021.

 M = Material moisture content (%)
 Material moisture content (%)

Emission factors for controlled screen per AP-42 Section 11.19.2, Table 11.19.2-2, August 2004.
 ² Hourly Emissions lb/hr) = Max Hourly Throughput (ton/hr) x Fine Content (%) / 100 x Emission Factor lb/ton) x (1 - Control Efficiency (%) / 100).
 ³ Annual Emissions (tpy) = Annual Throughput (tpy) x Fine Content (%) / 100 x Emission Factor lb/ton) x (1 - Control Efficiency (%) / 100) / 2,000 lb/ton).

Table A-11. Emissions - Ball Drop Crushing

				Moisture		Max Hourly Throughput (ton/hr)		ssion Fact (lb/ton)	tor ²	Hour	ly Emissi (lb/hr)	ons ³	Annu	al Emissi (tpy)	ons ⁴
Emission Unit ID	Emission Point ID	Transfer Description	Material	Content (%)	(ton/hr)	(tpy)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
CR1	CR1	Ball Drop Crushing	Large Scrap	1	8	8,200	0.0012	0.00054	0.00010	0.0096	0.0043	0.00080	0.0049	0.0022	0.00041

¹ Ball drop throughput is nominal maximum capacity based on CMC's operational experience.

² Emission factor for controlled tertiary crushing per AP-42 Section 11.19.2, Table 11.19.2-2, August 2004.

³ Hourly Emissions Increase lb/hr) = Max Hourly Throughput Increase (ton/hr) x Emission Factor (lb/ton)

⁴ Annual Emissions Increase (tpy) = Annual Throughput Increase (tpy) x Emission Factor lb/ton) / 2,000 (lb/ton)

Table A-12. Emissions - Storage Piles

				Max. Pile Area	Silt Content	Control Application	Control Efficiency		sion Fact /day/aci		Hour	y Emissio (lb/hr)	ons ^{3, 4}	Annu	al Emissio (tpy)	ons ^{3, 5}
Emission	Emission					Аррисаціон	-	Total	Total	Total	Total	Total	Total	Total	Total	Total
Unit ID	Point ID	Pile Description	Material	(ft ²)	(%)		(%)	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}	PM	PM ₁₀	PM _{2.5}
W51A	W51A	ECS Scrap Building Storage Pile A	Scrap	5,900	4.3	Partial Enclosure	50	3.34	1.67	0.25	0.019	0.009	0.0014	0.083	0.041	0.0062
W51B	W51B	ECS Scrap Building Storage Pile B	Scrap	5,400	4.3	Partial Enclosure	50	3.34	1.67	0.25	0.017	0.009	0.0013	0.076	0.038	0.0057
W51C	W51C	ECS Scrap Building Storage Pile C	Scrap	5,300	4.3	Partial Enclosure	50	3.34	1.67	0.25	0.017	0.008	0.0013	0.074	0.037	0.0056
W51D	W51D	ECS Scrap Building Overage Scrap Pile	Scrap	12,100	4.3	None	-	6.68	3.34	0.51	0.077	0.039	0.0059	0.34	0.17	0.026
W51E	W51E	Outside Rail Scrap 5k Pile A	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W51F	W51F	Outside Rail Scrap 5k Pile B	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W51G	W51G	Outside Rail Scrap 5k Pile C	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W51H	W51H	Outside Rail Scrap 5k Pile D	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W51K	W51K	Outside Truck Scrap 5k Pile A	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W51L	W51L	Outside Truck Scrap 5k Pile B	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W51M	W51M	Outside Truck Scrap 5k Pile C	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W51N	W51N	Outside Truck Scrap 5k Pile D	Scrap	9,100	4.3	None	-	6.68	3.34	0.51	0.058	0.029	0.0044	0.25	0.13	0.019
W61	W61	Alloy Aggregate Storage Pile	Alloy Aggregate	1,000	2.3	Partial Enclosure	50	1.79	0.89	0.14	0.0017	0.0009	0.00013	0.0075	0.0037	0.00057
W71A	W71A	SPP Slag Storage Pile	Slag	29,100	5.3	None	-	8.23	4.11	0.62	0.23	0.115	0.017	1.00	0.50	0.076

Table A-12, Emissions - Storage Piles

				Max. Pile Area	Silt Content	Control Application	Control Efficiency	(sion Fact /day/ac	re)		y Emissio (lb/hr)			al Emissio (tpy)	
Emission Unit ID	Emission Point ID	Pile Description	Material	(ft²)	(%)		(%)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
W71B1	W71B1	SPP A-Scrap Pile	SPP Product													
W71B2	W71B2	SPP B-Scrap Pile	SPP Product													
W71B3	W71B3	SPP C-Scrap Pile	SPP Product													
W71B4	W71B4	SPP No. 1 Products Pile	SPP Product	74,100	5.3	None	-	8.23	4.11	0.62	0.58	0.29	0.044	2.55	1.28	0.19
W71B5	W71B5	SPP No. 2 Products Pile	SPP Product													
W71B6	W71B6	SPP No. 3 Products Pile	SPP Product													
W71B7	W71B7	SPP Overs Pile	SPP Product													
W81	W81	Residual Scrap Storage Pile in Scrap Yard	Residual Scrap	21,200	5.3	None	-	8.23	4.11	0.62	0.17	0.083	0.013	0.73	0.37	0.055
W111	W111	Mill Scale Pile	Mill Scale	3,500	5.3	Partial Enclosure	50	4.11	2.06	0.31	0.014	0.0069	0.0010	0.060	0.030	0.0046

¹ Emission factors for storage piles per Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, EPA-450/2-92-004, September 1992. The PM₁₀ emission factor is half the PM emission.

$$EF = 1.7 \left(\frac{s}{1.5}\right) \left(\frac{365 - P}{235}\right) \left(\frac{f}{15}\right)$$

where EF = PM Emission factor lb/day/acre)

14

f = % of time the unobstructed wind speed exceeds 12 mph at the pile height

Per meteorological data collected at Martinsburg Airport station for period between 2017 to 2021.

P = Days per year with at least 0.01 inch precipitation (days)

```
30
```

Per AP-42 figure 13.2.2-1, November 2006.

² Per AP-42, Section 13.2.4, November 2006, the particle size multiplier used for calculating emission factors is as follows: PM_{10}

$$_{0} = 0.35$$

 $_{5} = 0.053$

$$PM_{2.5} = 0.0$$

³ The conversion from acre to ft² is 43,560 ft²/acre

⁴ Hourly Emissions lb/hr) = Emission Factor (lb/day/acre) x Max. Pile Area (ft^2) / 43,560 (ft^2 /acre) / 24 (hr/day).

⁵ Annual Emissions (tpy) = Emission Factor (lb/day/acre) x Max. Pile Area (ft²) / 43,560 (ft²/acre) x 365 (day/yr) / 2,000 lb/ton).

Table A-13a. Emission Factors - Paved Road

								Control	Paved Ho	urly Emiss	ion Factor	Paved Da	ily Emissi	on Factor	Paved Ann	ual Emiss	ion Factor
					Vehicle We	eight (tons)		Efficiency	(lb/	Paved VM	T) 1	(lb/	Paved VM	T) ¹	(lb/	Paved VM	T) ¹
Emission Point ID	Description	Truck Type	Silt Loading	Empty	Full	Average	Capacity	(%)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
		Haul Truck	3.34	15	40	27.5	25	96	0.039	0.0077	0.0019	0.039	0.0077	0.0019	0.035	0.0070	0.0017
		Trailer	3.34	15	-	15	2	96	0.021	0.0042	0.0010	0.021	0.0042	0.0010	0.019	0.0037	0.00092
PR1	Paved Roads	Loader	3.34	26	43	34.5	17	96	0.049	0.010	0.0024	0.049	0.010	0.0024	0.044	0.0088	0.0022
PKI	Paveu Rodus	Euclid/Roll-Off Truck	3.34	26	36	31	10	96	0.044	0.0088	0.0021	0.044	0.0088	0.0021	0.039	0.0079	0.0019
		Gas Truck	3.34	4	8	6	4	96	0.0082	0.0016	0.00040	0.0082	0.0016	0.00040	0.0074	0.0015	0.00036
		Forklift/Loader	3.34	4	8	6	4	96	0.0082	0.0016	0.00040	0.0082	0.0016	0.00040	0.0074	0.0015	0.00036

¹ Emission factors for vehicular traffic on paved roads per U.S. EPA AP-42, Section 13.2.1 (Paved Roads), January 2011.

Short-Term

$$E = k (sL)^{0.91} \times (W)^{1.02}$$

Annual

$$E_{ext} = [k (sL)^{0.91} \times (W)^{1.02}] (1 - P/4N)$$

E = size-specific emission factor lb/VMT)

k = Constant for equation

PM PM₁₀ PM_{2.5}

k = 0.011 0.0022 0.00054

Per AP-42 Table 13.2.1-1, January 2011 sL = road surface silt loading (g/m^2)

3.34

as accepted by MCAQD and EPA Region 9 for the PSD permit actions at the CMC operations

in Arizona, which are substantially similar to the proposed project.

W = mean vehicle weight (tons)

P = Days per year with at least 0.01 inch precipitation

150

Per AP-42 Figure 13.2.1-2, January 2011, for West Virginia

N = Number of days in the averaging period

365

Table A-13b. Emission Factors - Unpaved Roads

					Vehicle Wei	ight ³ (tons)		Control Efficiency		d Hourly E b/Unpave	d VMT) 1		d Daily Er D/Unpave	d VMT) ¹	•	i Annual E b/Unpave	d VMT) ¹
Emission Point ID	Description	Truck Type	Silt Content	Empty	Full	Average	Capacity	(%)	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
		Haul Truck	6.0	15	40	27.5	25	70	2.45	0.65	0.065	2.45	0.65	0.065	1.44	0.38	0.038
		Trailer	6.0	15	-	15	2	70	1.87	0.498	0.050	1.87	0.50	0.050	1.10	0.29	0.029
UR1	Unpaved	Loader	6.0	26	43	34.5	17	70	2.72	0.72	0.072	2.72	0.72	0.072	1.60	0.43	0.043
UKI	Roads	Euclid/Roll-Off Truck	6.0	26	36	31	10	70	2.59	0.69	0.069	2.59	0.69	0.069	1.52	0.41	0.041
		Gas Truck	6.0	4	8	6	4	70	1.24	0.329	0.033	1.24	0.33	0.033	0.73	0.19	0.019
		Forklift/Loader	6.0	4	8	6	4	70	1.24	0.33	0.033	1.24	0.33	0.033	0.73	0.19	0.019

¹ Emission factors for vehicular traffic on unpaved roads per U.S. EPA AP-42, Section 13.2.2 (Unpaved Roads), November 2006.

$$E = k (s/12)^{a} (W/3)^{b}$$

Annual

$$E_{ext} = E [(365 - P)/365]$$

E = size-specific emission factor lb/VMT)													
k, a, b = Constants for equation 1a													
	PM PM ₁₀ PM _{2.5}												
k =	k = 4.9 1.5 0.15												
a =	0.7	0.9	0.9										

a - 0.7 0.5 0.9 b = 0.45 0.45 0.45 Per AP-42 Table 13.2.2-2, November 2006 s = surface material silt content (%)

6 Per U.S. EPA AP-42 Section 13.2.2, November 2006 W = mean vehicle weight (tons) P = Days per year with at least 0.01 inch precipitation 150

Per AP-42 Figure 13.2.1-2, January 2011, for West Virginia

										Vehic	le Miles Tra	velled			
Truck ID			Truck Type	Origin	Destination	Material	Но	ourly (VMT/	hr)	Da	ily (VMT/da	ay)	An	nual (VMT/	yr)
	Road T	уре (%)		<u>-</u>											
	Paved	Unpaved					Paved	Unpaved	Total	Paved	Unpaved	Total	Paved	Unpaved	Total
TRK1	100%	0%	Haul Truck	Off-Site	ECS Building Scrap Bay	Scrap	2.04	0	2.04	40.84	0	40.84	10,755	0	10,755
TRK2	68%	32%	Haul Truck	Off-Site	Scrap Yard	Scrap	1.00	0.46	1.46	17.95	8.31	26.26	4,501	2,085	6,586
TRK3	100%	0%	Euclid/Roll-Off Truck	Around Scrap Yard	Around Scrap Yard	Scrap	0.83	0	0.83	14.96	0	14.96	3,751	0	3,751
TRK4	100%	0%	Haul Truck	Around Scrap Yard	Around Scrap Yard	Scrap	0.83	0	0.83	14.96	0	14.96	3,751	0	3,751
TRK5	97%	3%	Haul Truck	Off-Site	Silos	Coal/Coke	1.07	0.03	1.09	2.13	0.06	2.19	505	13	519
TRK6	100%	0%	Euclid/Roll-off Truck	Off-Site	Storage	Raw Materials / Supplies	2.61	0	2.61	2.61	0	2.61	302	0	302
TRK7	100%	0%	Forklift/Loader	Storage	Meltshop	Raw Materials / Supplies	0.26	0	0.26	0.26	0	0.26	30	0	30
TRK8	97%	3%	Haul Truck	Off-Site	Silos	Fluxing Agent	1.07	0.03	1.09	5.33	0.14	5.47	1,184	31	1,215
TRK9	100%	0%	Haul Truck	Off-Site	Alloy Pile	Alloy Aggregate	2.31	0	2.31	3.47	0	3.47	550	0	550
TRK10	100%	0%	Haul Truck	Meltshop	Off-Site	Removed Refractory / Other Materials	1.22	0	1.22	1.22	0	1.22	63	0	63
TRK11	100%	0%	Haul Truck	Finished Products Storage	Off-Site	Finished Product	8.63	0	8.63	207.21	0	207.21	54,562	0	54,562
TRK12	100%	0%	Gas Truck	Off-Site	Gas Storage Area	Gas	2.61	0	2.61	5.21	0	5.21	982	0	982
TRK13	100%	0%	Haul Truck	Mill Scale Pile	Off-Site	Mill Scale	1.70	0	1.70	8.48	0	8.48	920	0	920
TRK14	74%	26%	Euclid/Roll-off Truck	Meltshop	Quench Building	Slag	0.28	0.10	0.38	4.20	1.50	5.70	866	310	1,176
TRK15	0%	100%	Euclid/Roll-off Truck	Quench Building	SPP Area	Slag	0	0.34	0.34	0	5.16	5.16	0	1,064	1,064
TRK16	0%	100%	Loader	Within SPP Area	Within SPP Area	Slag	0	0.42	0.42	0	6.24	6.24	0	1,287	1,287
TRK17	91%	9%	Haul Truck	SPP Area	Off-Site	Slag	1.04	0.10	1.14	12.54	1.19	13.73	3,610	344	3,954
TRK18	100%	0%	Trailer	Trailer Parking Area	Trailer Parking Area	-	0.73	0	0.73	10.90	0	10.90	2,756	0	2,756
TRK19	80%	20%	Loader	General Support	General Support	-	6.70	1.64	8.34	53.57	13.11	66.68	10,755	2,632	13,386
Paved Unpaved			Total Total				34.91	3.12		405.82	35.71		99,844	7,766	

Table A-14. Roads Post-Project PTE

Table A-14.	Roads Post-Project PTE
-------------	------------------------

											T	Emi	ssion Fac	ctor (lb/V	'MT)		T														
Truck ID			Truck Type	Origin			Но	urly					Da	aily					Anr	nual						Hourly	Emissions	(lb/hr)	1		
	Road Ty	уре (%)				Paved			Unpaved			Paved	-		Unpaved			Paved			Unpaved			Paved			Unpaved			Total	
	Paved	Unpaved			Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total I PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
TRK1	100%	0%	Haul Truck	Off-Site	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	7.91E-02	1.58E-02	3.88E-03	0.00E+00	0.00E+00	0.00E+00	7.91E-02	1.58E-02	3.88E-03
TRK2	68%	32%	Haul Truck	Off-Site	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	3.86E-02	7.73E-03	1.90E-03	1.13E+00	3.02E-01	3.02E-02	1.17E+00	3.10E-01	3.21E-02
TRK3	100%	0%	Euclid/Roll-Off Truck	Around Scrap Yard	0.044	0.0088	0.0021	2.59	0.69	0.069	0.044	0.0088	0.0021	2.59	0.69	0.069	0.039	0.0079	0.0019	1.52	0.41	0.041	3.64E-02	7.28E-03	1.79E-03	0.00E+00	0.00E+00	0.00E+00	3.64E-02	7.28E-03	1.79E-03
TRK4	100%	0%	Haul Truck	Around Scrap Yard	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	3.22E-02	6.44E-03	1.58E-03	0.00E+00	0.00E+00	0.00E+00	3.22E-02	6.44E-03	1.58E-03
TRK5	97%	3%	Haul Truck	Off-Site	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	4.13E-02	8.26E-03	2.03E-03	6.85E-02	1.82E-02	1.82E-03	1.10E-01	2.65E-02	3.85E-03
TRK6	100%	0%	Euclid/Roll-off Truck	Off-Site	0.044	0.0088	0.0021	2.59	0.69	0.069	0.044	0.0088	0.0021	2.59	0.69	0.069	0.039	0.0079	0.0019	1.52	0.41	0.041	1.14E-01	2.28E-02	5.60E-03	0.00E+00	0.00E+00	0.00E+00	1.14E-01	2.28E-02	5.60E-03
TRK7	100%	0%	Forklift/Loader	Storage	0.008	0.0016	0.0004	1.24	0.33	0.033	0.008	0.0016	0.0004	1.24	0.33	0.033	0.007	0.0015	0.0004	0.73	0.19	0.019	2.10E-03	4.20E-04	1.03E-04	0.00E+00	0.00E+00	0.00E+00	2.10E-03	4.20E-04	1.03E-04
TRK8	97%	3%	Haul Truck	Off-Site	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	4.13E-02	8.26E-03	2.03E-03	6.85E-02	1.82E-02	1.82E-03	1.10E-01	2.65E-02	3.85E-03
TRK9	100%	0%	Haul Truck	Off-Site	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	8.95E-02	1.79E-02	4.40E-03	0.00E+00	0.00E+00	0.00E+00	8.95E-02	1.79E-02	4.40E-03
TRK10	100%	0%	Haul Truck	Meltshop	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	4.72E-02	9.44E-03	2.32E-03	0.00E+00	0.00E+00	0.00E+00	4.72E-02	9.44E-03	2.32E-03
TRK11	100%	0%	Haul Truck	Finished Products Storage	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	3.34E-01	6.69E-02	1.64E-02	0.00E+00	0.00E+00	0.00E+00	3.34E-01	6.69E-02	1.64E-02
TRK12	100%	0%	Gas Truck	Off-Site	0.008	0.0016	0.0004	1.24	0.33	0.033	0.008	0.0016	0.0004	1.24	0.33	0.033	0.007	0.0015	0.0004	0.73	0.19	0.019	2.14E-02	4.27E-03	1.05E-03	0.00E+00	0.00E+00	0.00E+00	2.14E-02	4.27E-03	1.05E-03
TRK13	100%	0%	Haul Truck	Mill Scale Pile	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	6.57E-02	1.31E-02	3.23E-03	0.00E+00	0.00E+00	0.00E+00	6.57E-02	1.31E-02	3.23E-03
TRK14	74%	26%	Euclid/Roll-off Truck	Meltshop	0.044	0.0088	0.0021	2.59	0.69	0.069	0.044	0.0088	0.0021	2.59	0.69	0.069	0.039	0.0079	0.0019	1.52	0.41	0.041	1.22E-02	2.45E-03	6.01E-04	2.59E-01	6.90E-02	6.90E-03	2.71E-01	7.15E-02	7.51E-03
TRK15	0%	100%	Euclid/Roll-off Truck	Quench Building	0.044	0.0088	0.0021	2.59	0.69	0.069	0.044	0.0088	0.0021	2.59	0.69	0.069	0.039	0.0079	0.0019	1.52	0.41	0.041	0.00E+00	0.00E+00	0.00E+00	8.90E-01	2.37E-01	2.37E-02	8.90E-01	2.37E-01	2.37E-02
TRK16	0%	100%	Loader	Within SPP Area	0.049	0.0098	0.0024	2.72	0.72	0.072	0.049	0.0098	0.0024	2.72	0.72	0.072	0.044	0.0088	0.0022	1.60	0.43	0.043	0.00E+00	0.00E+00	0.00E+00	1.13E+00	3.01E-01	3.01E-02	1.13E+00	3.01E-01	3.01E-02
TRK17	91%	9%	Haul Truck	SPP Area	0.039	0.0077	0.0019	2.45	0.65	0.065	0.039	0.0077	0.0019	2.45	0.65	0.065	0.035	0.0070	0.0017	1.44	0.38	0.038	4.05E-02	8.09E-03	1.99E-03	2.44E-01	6.50E-02	6.50E-03	2.84E-01	7.31E-02	8.49E-03
TRK18	100%	0%	Trailer	Trailer Parking Area	0.021	0.0042	0.0010	1.87	0.50	0.050	0.021	0.0042	0.0010	1.87	0.50	0.050	0.019	0.0037	0.0009	1.10	0.29	0.029	1.52E-02	3.03E-03	7.45E-04	0.00E+00	0.00E+00	0.00E+00	1.52E-02	3.03E-03	7.45E-04
TRK19	80%	20%	Loader	General Support	0.049	0.0098	0.0024	2.72	0.72	0.072	0.049	0.0098	0.0024	2.72	0.72	0.072	0.044	0.0088	0.0022	1.60	0.43	0.043	3.27E-01	6.54E-02	1.61E-02	4.45E+00	1.19E+00	1.19E-01	4.78E+00	1.25E+00	1.35E-01
Paved Unpaved			Total Total																				1.34	0.27	0.07	8.24	2.20	0.22			

Truck ID			Truck Type	Origin				Daily E	missions (I	b/day)							Annua	l Emission	s (tpy)			
HUCK ID	Road Ty	/pe (%)		ongin		Paved			Unpaved			Total			Paved			Unpaved			Total	
	Paved	Unpaved			Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}	Total PM	Total PM ₁₀	Total PM _{2.5}
TRK1	100%	0%	Haul Truck	Off-Site	1.58E+00	3.16E-01	7.77E-02	0.00E+00	0.00E+00	0.00E+00	1.58E+00	3.16E-01	7.77E-02	1.87E-01	3.74E-02	9.18E-03	0.00E+00	0.00E+00	0.00E+00	1.87E-01	3.74E-02	9.18E-03
TRK2	68%	32%	Haul Truck	Off-Site	6.95E-01	1.39E-01	3.41E-02	2.04E+01	5.43E+00	5.43E-01	2.11E+01	5.57E+00	5.77E-01	7.82E-02	1.56E-02	3.84E-03	1.51E+00	4.01E-01	4.01E-02	1.58E+00	4.17E-01	4.40E-02
TRK3	100%	0%	Euclid/Roll-Off Truck	Around Scrap Yard	6.55E-01	1.31E-01	3.21E-02	0.00E+00	0.00E+00	0.00E+00	6.55E-01	1.31E-01	3.21E-02	7.37E-02	1.47E-02	3.62E-03	0.00E+00	0.00E+00	0.00E+00	7.37E-02	1.47E-02	3.62E-03
TRK4	100%	0%	Haul Truck	Around Scrap Yard	5.79E-01	1.16E-01	2.84E-02	0.00E+00	0.00E+00	0.00E+00	5.79E-01	1.16E-01	2.84E-02	6.52E-02	1.30E-02	3.20E-03	0.00E+00	0.00E+00	0.00E+00	6.52E-02	1.30E-02	3.20E-03
TRK5	97%	3%	Haul Truck	Off-Site	8.26E-02	1.65E-02	4.05E-03	1.37E-01	3.65E-02	3.65E-03	2.20E-01	5.30E-02	7.70E-03	8.78E-03	1.76E-03	4.31E-04	9.56E-03	2.55E-03	2.55E-04	1.83E-02	4.30E-03	6.86E-04
TRK6	100%	0%	Euclid/Roll-off Truck	Off-Site	1.14E-01	2.28E-02	5.60E-03	0.00E+00	0.00E+00	0.00E+00	1.14E-01	2.28E-02	5.60E-03	5.94E-03	1.19E-03	2.91E-04	0.00E+00	0.00E+00	0.00E+00	5.94E-03	1.19E-03	2.91E-04
TRK7	100%	0%	Forklift/Loader	Storage	2.10E-03	4.20E-04	1.03E-04	0.00E+00	0.00E+00	0.00E+00	2.10E-03	4.20E-04	1.03E-04	1.09E-04	2.19E-05	5.37E-06	0.00E+00	0.00E+00	0.00E+00	1.09E-04	2.19E-05	5.37E-06
TRK8	97%	3%	Haul Truck	Off-Site	2.06E-01	4.13E-02	1.01E-02	3.42E-01	9.12E-02	9.12E-03	5.49E-01	1.33E-01	1.93E-02	2.06E-02	4.12E-03	1.01E-03	2.24E-02	5.97E-03	5.97E-04	4.30E-02	1.01E-02	1.61E-03
TRK9	100%	0%	Haul Truck	Off-Site	1.34E-01	2.69E-02	6.59E-03	0.00E+00	0.00E+00	0.00E+00	1.34E-01	2.69E-02	6.59E-03	9.56E-03	1.91E-03	4.69E-04	0.00E+00	0.00E+00	0.00E+00	9.56E-03	1.91E-03	4.69E-04
TRK10	100%	0%	Haul Truck	Meltshop	4.72E-02	9.44E-03	2.32E-03	0.00E+00	0.00E+00	0.00E+00	4.72E-02	9.44E-03	2.32E-03	1.10E-03	2.20E-04	5.40E-05	0.00E+00	0.00E+00	0.00E+00	1.10E-03	2.20E-04	5.40E-05
TRK11	100%	0%	Haul Truck	Finished Products Storage	8.03E+00	1.61E+00	3.94E-01	0.00E+00	0.00E+00	0.00E+00	8.03E+00	1.61E+00	3.94E-01	9.48E-01	1.90E-01	4.66E-02	0.00E+00	0.00E+00	0.00E+00	9.48E-01	1.90E-01	4.66E-02
TRK12	100%	0%	Gas Truck	Off-Site	4.27E-02	8.54E-03	2.10E-03	0.00E+00	0.00E+00	0.00E+00	4.27E-02	8.54E-03	2.10E-03	3.61E-03	7.23E-04	1.77E-04	0.00E+00	0.00E+00	0.00E+00	3.61E-03	7.23E-04	1.77E-04
TRK13	100%	0%	Haul Truck	Mill Scale Pile	3.29E-01	6.57E-02	1.61E-02	0.00E+00	0.00E+00	0.00E+00	3.29E-01	6.57E-02	1.61E-02	1.60E-02	3.20E-03	7.85E-04	0.00E+00	0.00E+00	0.00E+00	1.60E-02	3.20E-03	7.85E-04
TRK14	74%	26%	Euclid/Roll-off Truck	Meltshop	1.84E-01	3.67E-02	9.02E-03	3.89E+00	1.04E+00	1.04E-01	4.07E+00	1.07E+00	1.13E-01	1.70E-02	3.40E-03	8.35E-04	2.36E-01	6.29E-02	6.29E-03	2.53E-01	6.63E-02	7.13E-03
TRK15	0%	100%	Euclid/Roll-off Truck	Quench Building	0.00E+00	0.00E+00	0.00E+00	1.33E+01	3.56E+00	3.56E-01	1.33E+01	3.56E+00	3.56E-01	0.00E+00	0.00E+00	0.00E+00	8.11E-01	2.16E-01	2.16E-02	8.11E-01	2.16E-01	2.16E-02
TRK16	0%	100%	Loader	Within SPP Area	0.00E+00	0.00E+00	0.00E+00	1.69E+01	4.51E+00	4.51E-01	1.69E+01	4.51E+00	4.51E-01	0.00E+00	0.00E+00	0.00E+00	1.03E+00	2.74E-01	2.74E-02	1.03E+00	2.74E-01	2.74E-02
TRK17	91%	9%	Haul Truck	SPP Area	4.86E-01	9.71E-02	2.38E-02	2.93E+00	7.80E-01	7.80E-02	3.41E+00	8.77E-01	1.02E-01	6.27E-02	1.25E-02	3.08E-03	2.48E-01	6.62E-02	6.62E-03	3.11E-01	7.87E-02	9.70E-03
TRK18	100%	0%	Trailer	Trailer Parking Area	2.28E-01	4.55E-02	1.12E-02	0.00E+00	0.00E+00	0.00E+00	2.28E-01	4.55E-02	1.12E-02	2.58E-02	5.16E-03	1.27E-03	0.00E+00	0.00E+00	0.00E+00	2.58E-02	5.16E-03	1.27E-03
TRK19	80%	20%	Loader	General Support	2.62E+00	5.23E-01	1.28E-01	3.56E+01	9.49E+00	9.49E-01	3.82E+01	1.00E+01	1.08E+00	2.36E-01	4.71E-02	1.16E-02	2.10E+00	5.61E-01	5.61E-02	2.34E+00	6.08E-01	6.77E-02
Paved Unpaved			Total Total		16.01	3.20	0.79	93.57	24.94	2.49				1.76	0.35	0.086	5.97	1.59	0.16			

TRUE TRUE TRUE

Emission Unit ID Emission Emission Unit ID Point ID Descripti				Rat	ting	Operation ¹				Pollutan	t				
Emission Unit ID			Engine Tier	(hp)	(kW)	(hr/yr)	Total PM/PM ₁₀ /PM _{2.5}	NO _x	со	voc	SO ₂ (wt% S)	CO ₂	CH₄	N ₂ O	CO₂e
									Emis	sion Factor ²	(g/kW-hr)				
							0.20	3.73	3.50	0.27	0.0015	694.26	0.028	0.0056	697
		_	Model Year						Emi	ssion Factor ³	(g/hp-hr)	-			-
EGEN1	EGEN1	Emergency	2006+, Tier 3	1,600	1,193	100	0.15	2.78	2.61	0.20	-	517.72	0.021	0.0042	519
		Generator 1	Engine	_,	_,				Но	urly Emissions	5 ⁴ (lb/hr)				
			gc				0.53	9.82	9.21	0.70	0.017	1826.20	0.074	0.0148	1,832
									Α	nnual Emissio	ns (tpy)				
							0.026	0.49	0.46	0.035	0.00087	91.31	0.00370	0.00074	92
									Emis	sion Factor ²	(g/kW-hr)				
							0.20	3.73	3.50	0.27	0.0015	694.26	0.028	0.0056	697
			Model Year						Emi	ssion Factor ³	(g/hp-hr)				
EFWP1	EFWP1	Emergency Fire	2006+, Tier 3	300	224	100	0.15	2.78	2.61	0.20	-	517.72	0.021	0.0042	519
		Water Pump 1	Engine	500	227	100			Но	urly Emissions	5 ⁴ (lb/hr)				
			-				0.10	1.84	1.73	0.13	0.0033	342.41	0.014	0.0028	344
									Α	nnual Emissio	ns (tpy)				
							0.0049	0.09	0.086	0.0066	0.00016	17.12	0.00069	0.00014	17

Table A-15a. Emissions - Emergency Generators

¹ Hours of operation for testing and maintenance, are being limited consistent with the requirements of 40 CFR Part 60, Subpart IIII
 ² Based on NSPS Subpart IIII, referencing 40 CFR Part 1039, Appendix I with emissions of VOC and NC_x speciated based Table 4-6 of the EPA publication "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling – Compression Ignition", EPA420-P-02-016 GHG emission based on the following

	GHG emission based on the following	g			
	For CO ₂	73.96 kg/N	MMBtu I	per 40 CFR Part 98, Subpai	t C, Table C-1
	For CH₄	0.0030 kg/N	MMBtu j	per 40 CFR Part 98, Subpai	't C, Table C-2
	For N ₂ O	0.00060 kg/N	MMBtu j	per 40 CFR Part 98, Subpar	τ C, Table C-2
	CO ₂ e calculated using Global Warmin	ng Potentials (GWPs) from of 40) CFR Part 98, Table A-1, D	ecember 2014.
	$CO_2 GWP =$	1			
	$CH_4 GWP =$	25			
	$N_2O GWP =$	298			
3	Emission factor converted to g/hp-hr	from g/kW-hr	assuming		1.341 hp/kW
4	Sulfur Dioxide calculated based on m	aximum fuel s	sulfur content		15 ppmw
	Average brake specific fuel consump	tion of			7,000 Btu/hp-hr
	Diesel heating value of				19,300 Btu/lb

	Emission	Hourly	Annual	Hourly	Annual
Pollutant	Factors ¹	Emissions ²	Emissions ³	Emissions ²	Emissions ³
	lb/MMBtu	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Emission Unit ID		EGI	EN1	EFV	VP1
Emission Point ID		EGI	EN1	EFV	VP1
Emission Unit Description		Emergency	Generator 1	Emergency Fire	e Water Pump 1
Benzene	9.33E-04	1.04E-02	5.22E-04	1.96E-03	9.80E-05
Toluene	4.09E-04	4.58E-03	2.29E-04	8.59E-04	4.29E-05
Xylene	2.85E-04	3.19E-03	1.60E-04	5.99E-04	2.99E-05
1,3-Butadiene	3.91E-05	4.38E-04	2.19E-05	8.21E-05	4.11E-06
Formaldehyde	1.18E-03	1.32E-02	6.61E-04	2.48E-03	1.24E-04
Acetaldehyde	7.67E-04	8.59E-03	4.30E-04	1.61E-03	8.05E-05
Acrolein	9.25E-05	1.04E-03	5.18E-05	1.94E-04	9.71E-06
Naphthalene	8.48E-05	9.50E-04	4.75E-05	1.78E-04	8.90E-06
Acenaphthylene	5.06E-06	5.67E-05	2.83E-06	1.06E-05	5.31E-07
Acenaphthene	1.42E-06	1.59E-05	7.95E-07	2.98E-06	1.49E-07
Fluorene	2.92E-05	3.27E-04	1.64E-05	6.13E-05	3.07E-06
Phenanthrene	2.94E-05	3.29E-04	1.65E-05	6.17E-05	3.09E-06
Anthracene	1.87E-06	2.09E-05	1.05E-06	3.93E-06	1.96E-07
Fluoranthene	7.61E-06	8.52E-05	4.26E-06	1.60E-05	7.99E-07
Pyrene	4.78E-06	5.35E-05	2.68E-06	1.00E-05	5.02E-07
Benz(a)anthracene	1.68E-06	1.88E-05	9.41E-07	3.53E-06	1.76E-07
Chrysene	3.53E-07	3.95E-06	1.98E-07	7.41E-07	3.71E-08
Benzo(b)fluoranthene	9.91E-08	1.11E-06	5.55E-08	2.08E-07	1.04E-08
Benzo(k)fluoranthene	1.55E-07	1.74E-06	8.68E-08	3.26E-07	1.63E-08
Benzo(a)pyrene	1.88E-07	2.11E-06	1.05E-07	3.95E-07	1.97E-08
Indeno(1,2,3-cd)pyrene	3.75E-07	4.20E-06	2.10E-07	7.88E-07	3.94E-08
Dibenzo(a,h)anthracene	5.83E-07	6.53E-06	3.26E-07	1.22E-06	6.12E-08
Benzo(g,h,i)perylene	4.89E-07	5.48E-06	2.74E-07	1.03E-06	5.13E-08

Table A-15b. HAP Emissions - Diesel Emergency Water Pump

¹ HAP emissions are calculated based on emission factors for diesel engines per AP-42 Section 3.3, Table 3.3-2.

² Hourly Emissions lb/hr) = Rating (hp) x Avg. Brake Specific Fuel Consumption (Btu/hp-hr) x 1/106 (MMBtu/Btu x Emission Factor lb/MMBtu.

³ Annual Emissions (tpy) = Rating (hp) x Avg. Brake Specific Fuel Consumption (Btu/hp-hr)x Emission Factor lb/MMBtu * 100 (hours/yr) / 2,000 lb/ton).

Steel Mill

Emission Unit ID	Emission Point ID	Unit	Steel Thro	ughput	Steel Removal Rate	Maximum Cutting Rate	Maximum Daily Operation	PM/PM ₁₀ /PM _{2.5} Emission Factor ^{1, 2}	PM/PM ₁	₀ /PM _{2.5} Er	nission Rate ³
onic ib	Point ID	Description	(lb/hr)	(tpy)	(in width cut/cut)	(cuts/ft throughput)	(hr/day)	(lb/inch cut)	(lb/hr)	(lb/day)	(tpy)
TORCH1	TORCH1	Cutting Torches	10,000	10,000	1	0.4	12	1.62E-04	0.19	2.34	0.19

¹ Emission factor for oxyacetylene cutting per American Welding Society (AWS). It is assumed that the emission rate from propane or natural gas cutting is similar to that of oxyacetylene cutting.

² Because no PM₁₀ or PM_{2.5} emission factors are available, it is conservatively estimated that PM₁₀ and PM_{2.5} are equal to PM.

³ Sample emission calculations

Hourly Emission Rate (lb/hr) =	10,000 lb steel throughput	1 in width cut	1 ft	l (lb steel cut/lb steel throughput	0.4 cuts	ft length cut x ft thick cut x ft width cu	1	(12 in cut) ³ 1.	62E-04 lb PM =	(0.19 lb/hr
	hr	cut	12 in	(ft steel cut /ft steel throughput)fee	et steel throughput	480 lb steel cut	1 in width cut	(1 ft cut) ³ n leng	gth cut, 1 in thick		
Daily Emission Rate (lb/day) =	0.19 lb PM	12 hr							=	2	2.34 lb/day
	hr	day									
Annual Emission Rate (tpy) =	10,000 ton steel throughpu	1 in width cut	1 ft	L (Ib steel cut/Ib steel throughput	0.4 cuts	ft length cut x ft thick cut x ft width cu	1	(12 in cut) ³ 1.	62E-04 lb PM =	(0.19 lb/hr
	yr	cut	12 in	(ft steel cut /ft steel throughput)fee	et steel throughput	480 lb steel cut	1 in width cut	(1 ft cut) ³ n leng	gth cut, 1 in thick		

Table A-17. Emissions - Storage Tanks - Emission Calculations

1001071 277 20000	sions - Storage Tanks - Emission Calcu			Emission Unit ID	DSLTK-GEN1	DCI TV EWD1		
				Emission Unit ID Emission Point ID	DSLTK-GEN1 DSLTK-GEN1	DSLTK-FWP1 DSLTK-FWP1	DSLTK-VEH DSLTK-VEH	
				Emission Point ID		DSLIK-FWP1	DSLIK-VER	
					Diesel Storage	Diesel Storage	Diesel Storage	
				Emission Unit	Tank for	Tank for Fire Water	Tank Supporting	
				Description	Emergency	Pump No. 1	On-Site Vehicles	
					Generator No. 1	. ump ::0: 1		
				Tank Type	Horizontal Fixed	Horizontal Fixed	Vertical Fixed Roof	
AP-42 Section 7.1					Roof	Roof		
Equation	Equation	Parameter Description	Equation Parameter	Parameter Units	Value	Value	Value	Reference
Equation 1-1	$L_T = L_S + L_W$	Total Routine Losses - Diesel	L _T , Diesel	lb/yr, Diesel	0.72	0.72	7.18	AP-42 Section 7.1 Equation 1-1
Equation 1-2	$L_s = 365 V_V W_V K_E K_s$	Total Routine Losses - Diesel	LT, Diesel	tpy, Diesel	0.00036	0.00036	0.0036	lb/year / 2,000 lb/ton
Equation 1-3	$V_V = (Pi/4* D^2) * H_{VO}$	Total Routine Losses - Ethylbenzene	L _T , Ethylbenzene	lb/yr, Ethylbenzene	0.29	0.29	2.85	AP-42 Section 7.1 Equation 40-1
Equation 1-5	$K_{E} = dT_{V}/T_{LA} + (dP_{V} - dP_{B})/(P_{A} - P_{VA})$	Total Routine Losses - Ethylbenzene	L _T , Ethylbenzene	tpy, Ethylbenzene	0.000144	0.000144	0.00142	lb/year / 2,000 lb/ton
Equation 1-7	$dT_V = 0.7*dT_A + (0.02 \text{ x alpha x I})$	Total Routine Losses - Naphthalene	L _T , Naphthalene	lb/yr, Naphthalene	0.088	0.088	0.87	AP-42 Section 7.1 Equation 40-1
Equation 1-9	$dP_V = P_{VX} - P_{VN}$	Total Routine Losses - Naphthalene	L _T , Naphthalene	tpy, Naphthalene	0.000044	0.000044	0.00044	lb/year / 2,000 lb/ton
Equation 1-10	$dP_B = P_{BP} - P_{BV}$	Standing Loss	L, Haphendiene	lb/year	0.16	0.16	1.56	AP-42 Section 7.1 Equation 1-2
Equation 1-11	$dT_A = T_{AX} - T_{AN}$	Standing Loss	s	tpy	0.000081	0.000081	0.00078	Ib/year / 2,000 lb/ton
Equation 1-14	$D_{E} = \sqrt{(LD/(Pi/4))}$	Maximum Filling Rate	FR _M	gal/hr	500	500	5,000	Equipment Specifications
		-		5-7				
Equation 1-15	$H_{E} = (Pi/4) * D$	Vapor Space Volume	V _V	ft"	37.70	37.70	362.52	AP-42 Section 7.1 Equation 1-3
Equation 1-21	$K_{S} = 1 / (1 + (0.053 * P_{VA} * H_{VO}))$	Stock Vapor Density	Wv	lb/ft³	0.00017	0.00017	0.00017	AP-42 Section 7.1 Equation 1-22
Equation 1-22	$W_V = (M_V P_{VA}) / (R T_V)$	Vapor Space Expansion Factor (per day)	K _E	-	0.070	0.070	0.070	AP-42 Section 7.1 Equation 1-5
Equation 1-25	$P_{VA} = EXP [A - (B/T_{LA})]$	Effective tank diameter (For horizontal tanks)	D _E	ft	5.53	5.53	-	AP-42 Section 7.1 Equation 1-14
Equation 1-28	$T_{LA} = 0.4*T_{AA} + 0.6*T_{B} + (0.005*alpha*I)$	Effective tank height (For horizontal tanks)	H _E	ft	3.14	3.14	-	AP-42 Section 7.1 Equation 1-15
Equation 1-30	$T_{AA} = (T_{AX} + T_{AN})/2$	Vented Vapor Saturation Factor	Ks	-	1.00	1.00	1.00	AP-42 Section 7.1 Equation 1-21
Equation 1-31	$T_{B} = T_{AA} + 0.003 \text{ x alpha x I}$	Tank Diameter	D	ft	4	4	8.5	Equipment Specifications
Figure 7.1-17	$T_{1X} = T_{1A} + 0.25 \text{*} \text{dT}_{V}$	Tank Height/Length	H,	ft	6	6	12.6	Equipment Specifications
Figure 7.1-17	$T_{IN} = T_{IA} - 0.25 \text{ d} T_{V}$	Vapor Space Outage	H _{vo}	ft	1.57	1.57	6.39	AP-42 Section 7.1 Equation 1-4
Equation 1-35	$L_W = V_0 K_N K_P W_V K_B$	Average Daily Vapor Temperature Range	dTv	deg R	38.88	38.88	38.88	AP-42 Section 7.1 Equation 1-7
Equation 1-39	$V_0 = 5.614 \text{ Q}$	Average Daily Vapor Pressure - Diesel	dP _v , Diesel	psi	0.0047	0.0047	0.0047	AP-42 Section 7.1 Equation 1-9
					0.67	0.0047	0.67	
Equation 40-1	$L_{Ti} = (Z_{Vi})(L_T)$	Average Daily Vapor Pressure - Ethylbenzene	dP _v , Ethylbenzene	psi	0.67	0.67	0.67	AP-42 Section 7.1 Equation 1-9
Equation 40-3	$P_{i} = (P)(x_{i})$	Average Daily Vapor Pressure - Naphthalene	dP _v , Naphthalene	psi				AP-42 Section 7.1 Equation 1-9
Equation 40-4	$x_i = (Z_{Li} M_L) / M_i$	Breather Vent Pressure Setting Range	dP _B	psi	0.060	0.060	0.060	AP-42 Section 7.1 Equation 1-10
Equation 40-5	$y_i = P_i / P_{VA}$	Atmospheric Pressure	PA	psia	14.55	14.55	14.55	AP-42 Section 7.1 Table 7.1-7
Equation 40-6	$Zv_i = y_i M_i / M_V$	Vapor Pressure at Daily Average Liquid Surface Temperature - Diesel	P _{VA} , Diesel	psia	0.0073	0.0073	0.0073	AP-42 Section 7.1 Equation 1-25
		Average Daily Liquid Surface Temperature	T _{LA}	deg R	523	523	523	AP-42 Section 7.1 Equation 1-28
		Daily Ambient Temperature Range	dT _A	deg R	20.1	20.1	20.1	AP-42 Section 7.1 Equation 1-11
		Vapor Pressure @ Average Daily Max. Liquid Surface Temp. (TLX) - Diesel	Pvx, Diesel	psia	0.010	0.010	0.010	AP-42 Section 7.1 Equation 1-25
		Vapor Pressure @ Average Daily Min. Liquid Surface Temp. (T _{LN}) - Diesel	PvN, Diesel	psia	0.0053	0.0053	0.0053	AP-42 Section 7.1 Equation 1-25
		Vapor Pressure @ Average Daily Max. Liquid Surface Temp. (TLX) - Ethylbenzene	P _{VX} , Ethylbenzene	psia	3.44	3.44	3.44	AP-42 Section 7.1 Equation 1-25
		Vapor Pressure @ Average Daily Min. Liquid Surface Temp. (T _{IN}) - Ethylbenzene	P _{VN} , Ethylbenzene	psia	2.77	2.77	2.77	AP-42 Section 7.1 Equation 1-25
		Vapor Pressure @ Average Daily Max. Liquid Surface Temp. (T _{1X}) - Naphthalene	P _{vx} , Naphthalene	psia	1.04	1.04	1.04	AP-42 Section 7.1 Equation 1-25
		Vapor Pressure @ Average Daily Min. Liquid Surface Temp. (T _{IN}) - Naphthalene	P _{VN} , Naphthalene	psia	0.79	0.79	0.79	AP-42 Section 7.1 Equation 1-25
		Breather Vent Pressure Setting	P _{BP}	psig	0.03	0.03	0.03	AP-42 Section 7.1 Equation 1-10
		Breather Vent Vacuum Setting	P _{BV}	psig	-0.03	-0.03	-0.03	AP-42 Section 7.1 Equation 1-10
		Average daily maximum ambient temperature (for DC-Dulles, VA)	T _{AX}	deg R	524.97	524.97	524.97	AP-42 Section 7.1 Table 7.1-7
		Average daily minimum ambient temperature (for DC Dulles, VA)	T _{AN}	deg R	504.87	504.87	504.87	AP-42 Section 7.1 Table 7.1-7
	1	Vapor Molecular Weight - Diesel	M _v , Diesel	lb/lbmol	130	130	130	AP-42 Section 7.1 Table 7.1-7 AP-42 Section 7.1 Table 7.1-2
	1	Liquid Molecular Weight - Diesel	M _V , Diesel	lb/lbmol	130	130	130	AP-42 Section 7.1 Table 7.1-2 AP-42 Section 7.1 Table 7.1-2
			M _L , Diesei M _i , Ethylbenzene	lb/lbmol	106.17	100	106.17	AP-42 Section 7.1 Table 7.1-2 AP-42 Section 7.1 Table 7.1-3
		Liquid Molecular Weight - Ethylbenzene						
		Liquid Molecular Weight - Naphthalene	M _i , Naphthalene	lb/lbmol	128.17	128.17	128.17	AP-42 Section 7.1 Table 7.1-3
		Weight Fraction of Ethylbenzene	Z _{li} , Ethylbenzene	lb/lb	0.0030	0.003	0.003	Diesel SDS
		Weight Fraction of Naphthalene	Z _{ii} , Naphthalene	lb/lb	0.0025	0.0025	0.0025	Diesel SDS
		Liquid Mole Fraction - Ethylbenzene	x _i , Ethylbenzene	Ibmol/Ibmol	0.0053	0.0053	0.0053	AP-42 Section 7.1 Equation 40-4
		Liquid Mole Fraction - Naphthalene	x _i , Naphthalene	lbmol/lbmol	0.0037	0.0037	0.0037	AP-42 Section 7.1 Equation 40-4
		Partial Pressure of Component - Ethylbenzene	P _i , Ethylbenzene	psia	0.0036	0.0036	0.0036	AP-42 Section 7.1 Equation 40-3
		Partial Pressure of Component - Naphthalene	P _i , Naphthalene	psia	0.00090	0.00090	0.00090	AP-42 Section 7.1 Equation 40-3
		Vapor Mole Fraction of Component - Ethylbenzene	y _i , Ethylbenzene	lbmol/lbmol	0.49	0.49	0.49	AP-42 Section 7.1 Equation 40-5
		Vapor Mole Fraction of Component - Naphthalene	y _i , Naphthalene	lbmol/lbmol	0.12	0.12	0.12	AP-42 Section 7.1 Equation 40-5
		Vapor Weight Fraction of Component - Ethylbenzene	Z _{vi} , Ethylbenzene	lb/lb	0.40	0.40	0.40	AP-42 Section 7.1 Equation 40-6
		Vapor Weight Fraction of Component - Naphthalene	Z _{vi} , Naphthalene	lb/lb	0.12	0.12	0.12	AP-42 Section 7.1 Equation 40-6
	T	Ideal Gas Constant	R	(psia ft^3)/(lbmol deg R)	10.731	10.731	10.731	AP-42 Section 7.1 Equation 3-6
		Constant in vapor pressure equation - Diesel	A, Diesel	-	12.101	12.101	12.101	AP-42 Section 7.1 Table 7.1-2
		Constant in the vapor pressure equation - Diesel	B, Diesel	deg R	8,907	8,907	8,907	AP-42 Section 7.1 Table 7.1-2
		Constant in vapor pressure equation - Ethylbenzene	A, Ethylbenzene	-	7	7	7	AP-42 Section 7.1 Table 7.1-3
		Constant in the vapor pressure equation - Ethylbenzene	B, Ethylbenzene	deg R	3,046	3,046	3,046	AP-42 Section 7.1 Table 7.1-3
		Constant in vapor pressure equation - Naphthalene	A, Naphthalene	-	7	7	7	AP-42 Section 7.1 Table 7.1-3
		Constant in the vapor pressure equation - Naphthalene	B, Naphthalene	deg R	3,789	3,789	3,789	AP-42 Section 7.1 Table 7.1-3
		Daily Average Ambient Temperature	T _{AA}	deg R	514.92	514.92	514.92	AP-42 Section 7.1 Equation 1-30
		Liquid Bulk Temperature	T _B	deg R	518.64	518.64	518.64	AP-42 Section 7.1 Equation 1-31

Table A-17. Emissions - Storage Tanks - Emission Calculations

	-			Emission Unit ID Emission Point ID	DSLTK-GEN1 DSLTK-GEN1	DSLTK-FWP1 DSLTK-FWP1	DSLTK-VEH DSLTK-VEH	
				Emission Unit Description	Diesel Storage Tank for Emergency Generator No. 1	Diesel Storage Tank for Fire Water Pump No. 1	Diesel Storage Tank Supporting On-Site Vehicles	
AP-42 Section 7.1				Tank Type	Horizontal Fixed Roof	Horizontal Fixed Roof	Vertical Fixed Roof	
Equation	Equation	Parameter Description	Equation Parameter	Parameter Units	Value	Value	Value	Reference
		Average Daily Total Insulation Factor (for DC-Dulles, VA)	Ι	Btu/ft ² /day	1,279	1,279	1,279	AP-42 Section 7.1 Table 7.1-7
		Daily Maximum Liquid Surface Temperature	T _{LX}	deg R	533.08	533.08	533.08	AP-42 Section 7.1 Figure 7.1-17
		Daily Minimum Liquid Surface Temperature	T _{LN}	deg R	513.64	513.64	513.64	AP-42 Section 7.1 Figure 7.1-17
		Average vapor temperature	Tv	deg R	527.20	527.20	527.20	AP-42 Section 7.1 Equation 1-33
		Working Loss	L _W	lb/year	0.56	0.56	5.62	AP-42 Section 7.1 Equation 1-35
		Working Loss		tpy	0.000281	0.000281	0.0028	lb/year / 2,000 lb/ton
		Net Working Loss Throughput	V _Q	ft³/yr	3,342	3,342	33,417	AP-42 Section 7.1 Equation 1-39
		Working Loss Turnover (Saturation) Factor	K _N	-	1	1	1	AP-42 Section 7.1 Equation 1-35
		Working Loss Product Factor	K _p	-	1	1	1	AP-42 Section 7.1 Equation 1-35
		Vent Setting Correction Factor	K _B	-	1	1	1	AP-42 Section 7.1 Equation 1-35
		Annual Net Throughput	Q	bbl/yr	595.24	595.24	5,952.38	ga/yr / 42 gal/bbl
		Annual Net Throughput		ga/yr	25,000	25,000	250,000	Equipment Specifications
		Max Short-Term Emissions, Diesel		lb/hr, Diesel	0.015	0.015	0.15	(M _v x P _{vA}) / (R x T) x Max Fill Rate
		Max Short-Term Emissions, Ethylbenzene		lb/hr, Ethylbenzene	0.0060	0.0060	0.060	(M _V x P _{VA}) / (R x T) x Max Fill Rate
		Max Short-Term Emissions, Naphthalene	L _s , Naphthalene	lb/hr, Naphthalene	0.0018	0.0018	0.018	(M _v x P _{vA}) / (R x T) x Max Fill Rate

Emission	Emission Point	Max Single HAP	Max Single HAP	Total HAP	1,3- Butadiene	Methylnapht halene	2,3,7,8- Tetrachlorod ibenzo-p- dioxin	Methylchola nthrene	7,12- Dimethylben z(a)anthrace ne	Acenaphthe ne	ene	е	Acrolein	Anthracene
Point ID	Description	(lb/hr)		(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
BH1	Meltshop Baghouse	0.44	Manganese	0.83	-	-	7.75E-06	-	-	-	-	-	-	-
CV1	From EAF & LMS	0.0055	Manganese	0.0104	-	-	9.71E-08	-	-	-	-	-	-	-
CV1	From NG Comb	0.11	Hexane	0.11	-	1.44E-06	-	1.08E-07	9.57E-07	1.08E-07	1.08E-07	-	-	1.44E-07
RMV1	Rolling Mill Vent	0.015	Hexane	0.015	-	1.94E-07	-	1.45E-08	1.29E-07	1.45E-08	1.45E-08	-	-	1.94E-08
EGEN1	Emergency Generator	0.013	Formaldehyde	0.043	4.38E-04	-	-	-	-	1.59E-05	5.67E-05	8.59E-03	1.04E-03	2.09E-05
EFWP1	Emergency Fire Water Pump 1	0.0025	Formaldehyde	0.0081	8.21E-05	-	-	-	-	2.98E-06	1.06E-05	1.61E-03	1.94E-04	3.93E-06
DSLTK-GEN1	DSLTK-GEN1	0.0060	Ethylbenzene	0.0078										
DSLTK-FWP1	DSLTK-FWP1	0.0060	Ethylbenzene	0.0078										
DSLTK-VEH	DSLTK-VEH	0.0601	Ethylbenzene	0.0785										
TORCH1	Cutting Torches	5.67E-04	Hexane	5.95E-04	-	7.56E-09	-	5.67E-10	5.04E-09	5.67E-10	5.67E-10	-	-	7.56E-10
Max Single HAP		0.44	Manganese											
Total HAP				1.12										

Table A-18a. Site-Wide HAP Emissions Increase Summary - Hourly

Emission Point ID	Emission Point Description	Max Single HAP (tpy)	Max Single HAP (tpy)	Total HAP (tpy)	1,3- Butadiene (tpy)	2- Methylnapht halene (tpy)	2,3,7,8- Tetrachlorod ibenzo-p- dioxin (tpy)	3- Methylchola nthrene (tpy)	7,12- Dimethylben z(a)anthrace ne (tpy)		Acenaphthyl ene (tpy)	Acetaldehyd e (tpy)	Acrolein (tpy)	Anthracene (tpy)
BH1	Meltshop Baghouse	1.21	Manganese	2.31	-	-	2.15E-05	-	-	-	-	-	-	-
CV1	From EAF & LMS	0.0152	Manganese	0.029	-	-	2.70E-07	-	-	-	-	-	-	-
CV1	From NG Comb	0.4406	Hexane	0.4624	-	5.87E-06	-	4.41E-07	3.92E-06	4.41E-07	4.41E-07	-	-	5.87E-07
RMV1	Rolling Mill Vent	0.03266	Hexane	0.03427	-	4.35E-07	-	3.27E-08	2.90E-07	3.27E-08	3.27E-08	-	-	4.35E-08
EGEN1	Emergency Generator	0.00066	Formaldehyde	0.0022	2.19E-05	-	-	-	-	7.95E-07	2.83E-06	4.30E-04	5.18E-05	1.05E-06
EFWP1	Emergency Fire Water Pump 1	0.00012	Formaldehyde	0.00041	4.11E-06	-	-	-	-	1.49E-07	5.31E-07	8.05E-05	9.71E-06	1.96E-07
DSLTK-GEN1	DSLTK-GEN1	0.00014	Ethylbenzene	0.000188										
DSLTK-FWP1	DSLTK-FWP1	0.00014	Ethylbenzene	0.000188										
DSLTK-VEH	DSLTK-VEH	0.00142	Ethylbenzene	0.00186										
TORCH1	Cutting Torches	1.13E-03	Hexane	1.19E-03	-	1.51E-08	-	1.13E-09	1.01E-08	1.13E-09	1.13E-09	-	-	1.51E-09
Max Single HAP		1.21	Manganese											
Total HAP	Total HAP			2.84	2.60E-05	6.32E-06	2.18E-05	4.74E-07	4.22E-06	1.42E-06	3.84E-06	5.10E-04	6.15E-05	1.88E-06

Table A-18b. Site-Wide HAP Emissions Increase Summary - Annual

Table A-18a.	Site-Wide HAP	Emissions Increase
--------------	---------------	--------------------

Emission Point ID	Emission Point Description	Max Single HAP (Ib/hr)	Antimony (lb/hr)	Arsenic (Ib/hr)	Benz(a)anth racene (lb/hr)	Benzene (lb/hr)	Benzo(a)pyr ene (lb/hr)	Benzo(b)fluo ranthene (lb/hr)	Benzo(g,h,i) perylene (lb/hr)	Benzo(k)fluo ranthene (lb/hr)	Beryllium (lb/hr)	Cadmium (lb/hr)	Chromium (lb/hr)	Chrysene (lb/hr)
BH1	Meltshop Baghouse	0.44	5.83E-03	1.28E-03	-	-	-	-	-	-	1.51E-03	2.46E-02	8.80E-02	-
CV1	From EAF & LMS	0.0055	7.30E-05	1.61E-05	-	-	-	-	-	-	1.89E-05	3.08E-04	1.10E-03	-
CV1	From NG Comb	0.11	-	1.20E-05	1.08E-07	1.26E-04	7.18E-08	1.08E-07	7.18E-08	1.08E-07	7.18E-07	6.58E-05	8.37E-05	1.08E-07
RMV1	Rolling Mill Vent	0.015	-	1.61E-06	1.45E-08	1.69E-05	9.68E-09	1.45E-08	9.68E-09	1.45E-08	9.68E-08	8.87E-06	1.13E-05	1.45E-08
EGEN1	Emergency Generator 1	0.013	-	-	1.88E-05	1.04E-02	2.11E-06	1.11E-06	5.48E-06	1.74E-06	-	-	-	3.95E-06
EFWP1	Emergency Fire Water Pump 1	0.0025	-	-	3.53E-06	1.96E-03	3.95E-07	2.08E-07	1.03E-06	3.26E-07	-	-	-	7.41E-07
DSLTK-GEN1	DSLTK-GEN1	0.0060												
DSLTK-FWP1	DSLTK-FWP1	0.0060												
DSLTK-VEH	DSLTK-VEH	0.0601												
TORCH1	Cutting Torches	5.67E-04	-	6.30E-08	5.67E-10	6.61E-07	3.78E-10	5.67E-10	3.78E-10	5.67E-10	3.78E-09	3.46E-07	4.41E-07	5.67E-10
Max Single HAP		0.44												
Total HAP														

Emission Point ID	Emission Point Description	Max Single HAP (tpy)	Antimony (tpy)	Arsenic (tpy)	Benz(a)anth racene (tpy)	Benzene (tpy)	Benzo(a)pyr ene (tpy)	Benzo(b)fluo ranthene (tpy)	Benzo(g,h,i) perylene (tpy)	Benzo(k)fluo ranthene (tpy)	Beryllium (tpy)	Cadmium (tpy)	Chromium (tpy)	Chrysene (tpy)
BH1	Meltshop Baghouse	1.21	1.62E-02	3.56E-03	-	-	-	-	-	-	4.19E-03	6.83E-02	2.45E-01	-
CV1	From EAF & LMS	0.0152	2.03E-04	4.46E-05	-	-	-	-	-	-	5.25E-05	8.55E-04	3.06E-03	-
CV1	From NG Comb	0.4406	-	4.90E-05	4.41E-07	5.14E-04	2.94E-07	4.41E-07	2.94E-07	4.41E-07	2.94E-06	2.69E-04	3.43E-04	4.41E-07
RMV1	Rolling Mill Vent	0.03266	-	3.63E-06	3.27E-08	3.81E-05	2.18E-08	3.27E-08	2.18E-08	3.27E-08	2.18E-07	2.00E-05	2.54E-05	3.27E-08
EGEN1	Emergency Generator 1	0.00066	-	-	9.41E-07	5.22E-04	1.05E-07	5.55E-08	2.74E-07	8.68E-08	-	-	-	1.98E-07
EFWP1	Emergency Fire Water Pump 1	0.00012	-	-	1.76E-07	9.80E-05	1.97E-08	1.04E-08	5.13E-08	1.63E-08	-	-	-	3.71E-08
DSLTK-GEN1	DSLTK-GEN1	0.00014												
DSLTK-FWP1	DSLTK-FWP1	0.00014												
DSLTK-VEH	DSLTK-VEH	0.00142												
TORCH1	Cutting Torches	1.13E-03	-	1.26E-07	1.13E-09	1.32E-06	7.56E-10	1.13E-09	7.56E-10	1.13E-09	7.56E-09	6.93E-07	8.82E-07	1.13E-09
Max Single HAP		1.21												
Total HAP	Total HAP		1.64E-02	3.66E-03	1.59E-06	1.17E-03	4.41E-07	5.40E-07	6.41E-07	5.77E-07	4.24E-03	6.94E-02	2.48E-01	7.09E-07

Emission Point ID	Emission Point Description	Max Single HAP (Ib/hr)	Cobalt (Ib/hr)	Dibenzo(a,h) anthracene (lb/hr)	Dichlorobenz ene (lb/hr)	Ethylbenzen e (lb/hr)	Fluoranthen e (Ib/hr)	Fluorene (lb/hr)	Formaldehyd e (lb/hr)	Hexane (lb/hr)	Indeno(1,2, 3-cd)pyrene (lb/hr)	Lead Compounds (lb/hr)	Manganese (lb/hr)	Mercury (lb/hr)
BH1	Meltshop Baghouse	0.44	5.30E-03	-	-		-	-	-	-	-	1.87E-01	4.36E-01	7.25E-02
CV1	From EAF & LMS	0.0055	6.64E-05	-	-		-	-	-	-	-	2.35E-03	5.46E-03	9.09E-04
CV1	From NG Comb	0.11	5.02E-06	7.18E-08	7.18E-05		1.79E-07	1.67E-07	4.49E-03	1.08E-01	1.08E-07	-	2.27E-05	1.55E-05
RMV1	Rolling Mill Vent	0.015	6.77E-07	9.68E-09	9.68E-06		2.42E-08	2.26E-08	6.05E-04	1.45E-02	1.45E-08	-	3.06E-06	2.10E-06
EGEN1	Emergency Generator 1	0.013	-	6.53E-06	-		8.52E-05	3.27E-04	1.32E-02	-	4.20E-06	-	-	-
EFWP1	Emergency Fire Water Pump 1	0.0025	-	1.22E-06	-		1.60E-05	6.13E-05	2.48E-03	-	7.88E-07	-	-	-
DSLTK-GEN1	DSLTK-GEN1	0.0060				6.01E-03								
DSLTK-FWP1	DSLTK-FWP1	0.0060				6.01E-03								
DSLTK-VEH	DSLTK-VEH	0.0601				6.01E-02								
TORCH1	Cutting Torches	5.67E-04	2.64E-08	3.78E-10	3.78E-07		9.45E-10	8.82E-10	2.36E-05	5.67E-04	5.67E-10	-	1.20E-07	8.19E-08
Max Single HAP		0.44												
Total HAP														

Table A-18a. Site-Wide HAP Emissions Increase

Emission Point ID	Emission Point Description	Max Single HAP (tpy)	Cobalt (tpy)	Dibenzo(a,h) anthracene (tpy)	Dichlorobenz ene (tpy)	Ethylbenzen e	Fluoranthen e (tpy)	Fluorene (tpy)	Formaldehyd e (tpy)	Hexane (tpy)	Indeno(1,2, 3-cd)pyrene (tpy)	Lead Compounds (tpy)	Manganese (tpy)	Mercury (tpy)
BH1	Meltshop Baghouse	1.21	1.47E-02	-	-		-	-	-	-	-	5.20E-01	1.21E+00	2.02E-01
CV1	From EAF & LMS	0.0152	1.84E-04	-	-		-	-	-	-	-	6.52E-03	1.52E-02	2.53E-03
CV1	From NG Comb	0.4406	2.06E-05	2.94E-07	2.94E-04		7.34E-07	6.85E-07	1.84E-02	4.41E-01	4.41E-07	-	9.30E-05	6.36E-05
RMV1	Rolling Mill Vent	0.03266	1.52E-06	2.18E-08	2.18E-05		5.44E-08	5.08E-08	1.36E-03	3.27E-02	3.27E-08	-	6.89E-06	4.72E-06
EGEN1	Emergency Generator 1	0.00066	-	3.26E-07	-		4.26E-06	1.64E-05	6.61E-04	-	2.10E-07	-	-	-
EFWP1	Emergency Fire Water Pump 1	0.00012	-	6.12E-08	-		7.99E-07	3.07E-06	1.24E-04	-	3.94E-08	-	-	-
DSLTK-GEN1	DSLTK-GEN1	0.00014				1.44E-04								
DSLTK-FWP1	DSLTK-FWP1	0.00014				1.44E-04								
DSLTK-VEH	DSLTK-VEH	0.00142				1.42E-03								
TORCH1	Cutting Torches	1.13E-03	5.29E-08	7.56E-10	7.56E-07		1.89E-09	1.76E-09	4.72E-05	1.13E-03	1.13E-09	-	2.39E-07	1.64E-07
Max Single HAP		1.21												
Total HAP	Total HAP		1.49E-02	7.04E-07	3.16E-04	1.71E-03	5.85E-06	2.02E-05	2.05E-02	4.74E-01	7.24E-07	5.27E-01	1.23E+00	2.04E-01

Table A-18b. Site-Wide HAP Emissions Increase

Emission Point ID	Emission Point Description	Max Single HAP (Ib/hr)	Molybdenum (lb/hr)	Naphthalene (lb/hr)	Nickel (lb/hr)	Phenanthren e (lb/hr)	Pyrene (lb/hr)	Selenium (lb/hr)	Toluene (lb/hr)	Xylene (lb/hr)
BH1	Meltshop Baghouse	0.44	-	-	5.10E-03	-	-	3.21E-03	-	-
CV1	From EAF & LMS	0.0055	-	-	6.40E-05	-	-	4.02E-05	-	-
CV1	From NG Comb	0.11	6.58E-05	3.65E-05	1.26E-04	1.02E-06	2.99E-07	1.44E-06	2.03E-04	-
RMV1	Rolling Mill Vent	0.015	8.87E-06	4.92E-06	1.69E-05	1.37E-07	4.03E-08	1.94E-07	2.74E-05	-
EGEN1	Emergency Generator 1	0.013	-	9.50E-04	-	3.29E-04	5.35E-05	-	4.58E-03	3.19E-03
EFWP1	Emergency Fire Water Pump 1	0.0025	-	1.78E-04	-	6.17E-05	1.00E-05	-	8.59E-04	5.99E-04
DSLTK-GEN1	DSLTK-GEN1	0.0060		1.84E-03						
DSLTK-FWP1	DSLTK-FWP1	0.0060		1.84E-03						
DSLTK-VEH	DSLTK-VEH	0.0601		1.84E-02						
TORCH1	Cutting Torches	5.67E-04	3.46E-07	1.92E-07	6.61E-07	5.35E-09	1.57E-09	7.56E-09	1.07E-06	-
Max Single HAP		0.44								
Total HAP										

Table A-18a. Site-Wide HAP Emissions Increase

Emission Point ID	Emission Point Description	Max Single HAP (tpy)	Molybdenum (tpy)	Naphthalene (tpy)	Nickel (tpy)	Phenanthren e (tpy)	Pyrene (tpy)	Selenium (tpy)	Toluene (tpy)	Xylene (tpy)
BH1	Meltshop Baghouse	1.21	-	-	1.42E-02	-	-	8.91E-03	-	-
CV1	From EAF & LMS	0.0152	-	-	1.78E-04	-	-	1.12E-04	-	-
CV1	From NG Comb	0.4406	2.69E-04	1.49E-04	5.14E-04	4.16E-06	1.22E-06	5.87E-06	8.32E-04	-
RMV1	Rolling Mill Vent	0.03266	2.00E-05	1.11E-05	3.81E-05	3.08E-07	9.07E-08	4.35E-07	6.17E-05	-
EGEN1	Emergency Generator 1	0.00066	-	4.75E-05	-	1.65E-05	2.68E-06	-	2.29E-04	1.60E-04
EFWP1	Emergency Fire Water Pump 1	0.00012	-	8.90E-06	-	3.09E-06	5.02E-07	-	4.29E-05	2.99E-05
DSLTK-GEN1	DSLTK-GEN1	0.00014		4.39E-05						
DSLTK-FWP1	DSLTK-FWP1	0.00014		4.39E-05						
DSLTK-VEH	DSLTK-VEH	0.00142		4.35E-04						
TORCH1	Cutting Torches	1.13E-03	6.93E-07	3.84E-07	1.32E-06	1.07E-08	3.15E-09	1.51E-08	2.14E-06	-
Max Single HAP		1.21								
Total HAP	Total HAP		2.90E-04	7.40E-04	1.49E-02	2.40E-05	4.50E-06	9.03E-03	1.17E-03	1.90E-04

Table A-18b. Site-Wide HAP Emissions Increase

		Increase Summary - Houriy						Hourly P	TE (lb/hr)					
Emission Unit ID	ID	Emission Point Description	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NO _x	СО	VOC	SO ₂	Pb	Max Single HAP ²	Total HAP	Fluorides
					eltshop									
EAF1, LMS1	BH1	Meltshop Baghouse	10.36	29.92	29.92	29.92	45.63	936.00	35.10	49.14	0.19	0.44	0.83	1.17
EAF1, LMS1, CAST1	CV1	Caster Vent	1.12	1.70	1.70	1.70	8.85	7.92	0.72	0.80	0.0024	0.11	0.12	0.015
	-			-	ling Mills			•	-			-	•	
RMV1	RMV1	Rolling Mill Vent ¹	0.028	0.073	0.073	0.073	1.17	0.68	0.082	0.090	-	0.015	0.015	-
CBV1	CBV1	Cooling Beds Vent ¹	0.010	0.010	0.010	0.010	-	-	0.010	-	-	-	-	
SPV1	SPV1	Spooler Vent ¹	0.010	0.010	0.010	0.010	-	-	0.010	-	-	-	-	- 1
				Materia	l Storage Si	ilos								
FLXSLO11	FLXSLO11	Fluxing Agent Storage Silo No. 1	0.13	0.13	0.13	0.13	-	-	-	-	-	-	-	-
FLXSLO12	FLXSLO12	Fluxing Agent Storage Silo No. 2	0.13	0.13	0.13	0.13	-	-	-	-	-	-	-	-
CARBSLO1	CARBSLO1	Carbon Storage Silo No. 1	0.088	0.088	0.088	0.088	-	-	-	-	-	-	-	-
DUSTSL01	DUSTSLO1	EAF Baghouse Dust Silo	0.056	0.056	0.056	0.056	-	-	-	-	-	-	-	-
	-		-	Mater	ial Handlin	g			-	-		-		
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	0.041	0.041	0.0194	0.00294	-	-	-	-	-	-	-	-
TR51B	TR51B	Outside ECS Building Drop Points, Scrap, Storage Area	0.033	0.033	0.015	0.0023	-	-	-	-	-	-	-	-
TR51C	TR51C	Outside Rail Bins Drop Point, Scrap	0.011	0.011	0.005	0.0008	-	-	-	-	-	-	-	-
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	0.011	0.011	0.005	0.0008	-	-	-	-	-	-	-	-
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	0.0042	0.0042	0.0020	0.00030	-	-	-	-	-	-	-	-
TR81	TR81	Outside Drop Points, Alloy Aggregate	0.0030	0.0030	0.0014	0.00021	-	-	-	-	-	-	-	-
TR91A	TR91A	Inside Drop Points, Removed Refractory and Other Materials	0.0049	0.0049	0.0023	0.00035	-	-	-	-	-	-	-	-
TR91B	TR91B	Outside Drop Points, Removed Refractory and Other	0.0247	0.0247	0.012	0.0018	-	-	-	-	-	-	-	-
TR11A	TR11A	Outside SPP Pile Drop Points, Slag	0.00061	0.00061	0.00029	0.00004	-	-	-	-	-	-	-	-
TR11B1	TR11B1	SPP Material Transfers and Screens	0.023	0.023	0.010	0.0015	-	-	-	-	-	-	-	-
TR131	TR131	Outside Drop Points, Residual Scrap Pile	0.0049	0.0049	0.0023	0.00035	-	-	-	-	-	-	-	-
TR141	TR141	Outside Drop Points, Mill Scale Pile	0.045	0.045	0.0211	0.00319	-	-	-	-	-	-	-	-
CR1	CR1	Ball Drop Crushing	0.0096	0.0096	0.0043	0.00080	-	-	-	-	-	-	-	-
				Materia	l Storage P	iles								
W51A	W51A	ECS Scrap Building Storage Pile A	0.019	0.019	0.009	0.0014	-	-	-	-	-	-	-	-
W51B	W51B	ECS Scrap Building Storage Pile B	0.017	0.017	0.009	0.0013	-	-	-	-	-	-	-	-
W51C	W51C	ECS Scrap Building Storage Pile C	0.017	0.017	0.008	0.0013	-	-	-	-	-	-	-	-
W51D	W51D	ECS Scrap Building Overage Scrap Pile	0.077	0.077	0.039	0.0059	-	-	-	-	-	-	-	
W51E	W51E	Outside Rail Scrap 5k Pile A	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51F		Outside Rail Scrap 5k Pile B	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51G		Outside Rail Scrap 5k Pile C	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51H		Outside Rail Scrap 5k Pile D	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51K	W51K	Outside Truck Scrap 5k Pile A	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51L	W51L	Outside Truck Scrap 5k Pile B	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	
W51M	W51M	Outside Truck Scrap 5k Pile C	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W51N	W51N	Outside Truck Scrap 5k Pile D	0.058	0.058	0.029	0.0044	-	-	-	-	-	-	-	-
W61	W61	Alloy Aggregate Storage Pile	0.0017	0.0017	0.0009	0.00013	-	-	-	-	-	-	-	
W71A	W71A	SPP Slag Storage Pile	0.23	0.23	0.11	0.017	-	-	-	-	-	-	-	
W71B	W71B	SPP Piles	0.58	0.58	0.29	0.044	-	-	-	-	-	-	-	
W81	W81	Residual Scrap Storage Pile in Scrap Yard	0.17	0.17	0.083	0.013	-	-	-	-	-	-	-	
W111	W111	Mill Scale Pile	0.014	0.014	0.0069	0.0010	-	-	-	-	-	-	-	-

Table A-19. Site-Wide Emissions Increase Summary - Hourly

	nuturi poter							Hourly PT	E (lb/hr)					
Emission Unit ID	Emission Point ID	Emission Point Description	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NO _x	СО	VOC	SO ₂	Pb	Max Single HAP ²	Total HAP	Fluorides
				Cooli	ng Towers									
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	0.11	0.11	0.075	0.00024	-	-	-	-	-	-	-	-
CTC1	CTC1A	Contact Cooling Tower - Cell 1	0.055	0.055	0.038	0.00012	-	-	-	-	-	-	-	-
CTC1	CTC1B	Contact Cooling Tower - Cell 2	0.055	0.055	0.038	0.00012	-	-	-	-	-	-	-	-
				Ha	ulroads									
PR1	PR1	Paved Roads	1.34	1.34	0.27	0.066	-	-	-	-	-	-	-	-
UR1	UR1	Unpaved Roads	8.24	8.24	2.20	0.22	-	-	_	-	-	-	-	-
				Auxilia	ry Equipme	ent								
EGEN1	EGEN1	Emergency Generator 1	0.53	0.53	0.53	0.53	9.82	9.21	0.70	0.017	-	0.013	0.043	-
EFWP1	EFWP1	Emergency Fire Water Pump 1	0.10	0.10	0.10	0.10	1.84	1.73	0.13	0.0033	-	0.0025	0.0081	-
DSLTK-GEN1	DSLTK-GEN1	Diesel Storage Tank for Emergency Generator No. 1	-	-	-	-	-	-	0.015	-	-	0.0060	0.0078	-
DSLTK-FWP1	DSLTK-FWP1	Diesel Storage Tank for Fire Water Pump No. 1	-	-	-	-	-	-	0.015	-	-	0.0060	0.0078	-
DSLTK-VEH	DSLTK-VEH	Diesel Storage Tank Supporting On-Site Vehicles	-	-	-	-	-	-	0.15	-	-	0.060	0.078	-
TORCH1	TORCH1	Cutting Torches	0.20	0.20	0.20	0.20	0.046	0.026	0.0028	0.0035	1.57E-07	5.67E-04	5.95E-04	-
Total	Total		24.68	44.87	36.67	33.35	67.36	955.56	36.94	50.05	0.19	0.65	1.12	1.18

Table A-19. Site-Wide Emissions Increase Summary - Hourly

¹ Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.
 ² Max Single HAP is Manganese

	Emission	is Increase Summary - Annuai	Annual PTE (tpy)												
Emission Unit ID	Point ID	Emission Point Description	Filterable PM	Total PM	10	Total PM _{2.5}	NO _x	со	voc	SO ₂	Pb	Fluorides	Max Single HAP ⁵	Total HAP	CO ₂ e
					Melts			•		•	•	•	-	•	
EAF1, LMS1	BH1	Meltshop Baghouse	45.36	131.03	131.03	131.03	97.50	1,300	97.50	97.50	0.52	3.25	1.21	2.31	119,513
EAF1, LMS1, CAST1	CV1	Caster Vent	3.51	5.96	5.96	5.96	36.03	25.80	2.75	3.00	0.0066	0.041	0.44	0.49	35,348
	-		-		Rolling				-	-					
RMV1	RMV1	Rolling Mill Vent ¹	0.050	0.152	0.152	0.152	2.63	1.52	0.172	0.20	-	-	0.033	0.034	2,575
CBV1	CBV1	Cooling Beds Vent ¹	0.010	0.010	0.010	0.010	-	-	0.010	-	-	-	-	-	-
SPV1	SPV1	Spooler Vent ¹	0.010	0.010	0.010	0.010	-	-	0.010	-	-	-	-	-	-
					Material Sto	rage Silos			•	•	•	-			
FLXSLO11	FLXSLO11	Fluxing Agent Storage Silo No. 1	0.064	0.064	0.064	0.064	-	-	-	-	-	-	-	-	-
FLXSL012		Fluxing Agent Storage Silo No. 2	0.064	0.064	0.064	0.064	-	-	-	-	-	-	-	-	-
CARBSLO1		Carbon Storage Silo No. 1	0.044	0.044	0.044	0.044	-	-	-	-	-	-	-	-	-
DUSTSL01		EAF Baghouse Dust Silo	0.24	0.24	0.24	0.24	-	-	-	-	-	-	-	-	-
					Material H	andling				4					
TR51A	TR51A	Inside ECS Building Drop Points, Scrap	0.084	0.084	0.040	0.0060	-	-	-	-	-	-	-	-	-
TR51B		Outside ECS Building Drop Points, Scrap, Storage Area	0.11	0.11	0.050	0.0076	-	-	-	-	-	-	-	-	-
TR51C		Outside Rail Bins Drop Point, Scrap	0.035	0.035	0.017	0.0025	-	-	-	-	-	-	-	-	-
TR51E	TR51E	Outside Truck Bins Drop Point, Scrap	0.035	0.035	0.017	0.0025	-	-	-	-	-	-	-	-	-
TR71	TR71	Inside ECS Building Drop Points, Fluxing Agent	0.0021	0.0021	0.0010	0.00015	-	-	-	-	-	-	-	-	-
TR81		Outside Drop Points, Alloy Aggregate	0.00024	0.00024	0.00011	0.000017	-	-	-	-	-	-	-	-	-
TR91A		Inside Drop Points, Removed Refractory and Other Materials	0.00028	0.00028	0.00013	0.000020	-	-	-	-	-	-	-	-	-
TR91B		Outside Drop Points, Removed Refractory and Other	0.0014	0.00139	0.00066	0.00010	-	-	-	-	-	-	-	-	-
TR11A		Outside SPP Pile Drop Points, Slag	0.00056	0.00056	0.00026	0.000040	-	-	-	-	-	-	-	-	-
TR11B1		SPP Material Transfers and Screens	0.021	0.021	0.010	0.0013	-	-	-	-	-	-	-	-	-
TR131	TR131	Outside Drop Points, Residual Scrap Pile	0.00028	0.00028	0.00013	0.000020	-	-	-	-	-	-	-	-	-
TR141		Outside Drop Points, Mill Scale Pile	0.0036	0.0036	0.0017	0.00026	-	-	-	-	-	-	-	-	-
CR1		Ball Drop Crushing	0.0049	0.0049	0.0022	0.00041	-	-	-	-	-	-	-	-	-
					Material Sto	rage Piles			•	•	•	-			
W51A	W51A	ECS Scrap Building Storage Pile A	0.083	0.083	0.041	0.0062	-	-	-	-	-	-	-	-	-
W51B		ECS Scrap Building Storage Pile B	0.076	0.076	0.038	0.0057	-	-	-	-	-	-	-	-	-
W51C		ECS Scrap Building Storage Pile C	0.074	0.074	0.037	0.0056	-	-	-	-	-	-	-	-	-
W51D		ECS Scrap Building Overage Scrap Pile	0.34	0.34	0.17	0.026	-	-	-	-	-	-	-	-	-
W51E		Outside Rail Scrap 5k Pile A	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51F		Outside Rail Scrap 5k Pile B	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51G		Outside Rail Scrap 5k Pile C	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51H		Outside Rail Scrap 5k Pile D	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51K		Outside Truck Scrap 5k Pile A	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51L		Outside Truck Scrap 5k Pile B	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51M		Outside Truck Scrap 5k Pile C	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W51N		Outside Truck Scrap 5k Pile D	0.25	0.25	0.13	0.019	-	-	-	-	-	-	-	-	-
W61		Alloy Aggregate Storage Pile	0.0075	0.0075	0.0037	0.00057	-	-	-	-	-	-	-	-	-
W71A		SPP Slag Storage Pile	1.00	1.00	0.50	0.076	-	-	-	-	-	-	-	-	-
W71B		SPP Piles	2.55	2.55	1.28	0.19	-	-	-	-	-	-	-	-	-
W81		Residual Scrap Storage Pile in Scrap Yard	0.73	0.73	0.37	0.055	-	-	-	-	-	-	-	-	-
W111	W111	Mill Scale Pile	0.060	0.060	0.030	0.0046	-	-	-	-	-	-	-	-	-

Table A-20. Site-Wide Emissions Increase Summary - Annual

	Fundamina							Anr	nual PTE (tp	y)					
Emission Unit ID	Emission Point ID	Emission Point Description	Filterable PM	Total PM	Total PM ₁₀	Total PM _{2.5}	NO _x	СО	VOC	SO ₂	Pb	Fluorides	Max Single HAP ⁵	Total HAP	CO ₂ e
					Cooling T	Towers									
CTNC11	CTNC11A	Non-Contact Cooling Tower 1 - Cell 1	0.48	0.48	0.33	0.0010	-	-	-	-	-	-	-	-	-
CTNC11	CTNC11B	Non-Contact Cooling Tower 1 - Cell 2	0.48	0.48	0.33	0.0010	-	-	-	-	-	-	-	-	-
CTNC12	CTNC12A	Non-Contact Cooling Tower 2 - Cell 1	0.48	0.48	0.33	0.0010	-	-	-	-	-	-	-	-	-
CTNC12	CTNC12B	Non-Contact Cooling Tower 2 - Cell 2	0.48	0.48	0.33	0.0010	-	-	-	-	-	-	-	-	-
CTC1	CTC1A	Contact Cooling Tower - Cell 1	0.24	0.24	0.16	0.0005	-	-	-	-	-	-	-	-	-
CTC1	CTC1B	Contact Cooling Tower - Cell 2	0.24	0.24	0.16	0.0005	-	-	-	-	-	-	-	-	-
					Haulro	oads									
PR1	PR1	Paved Roads	1.76	1.76	0.35	0.086	-	-	-	-	-	-	-	-	-
UR1	UR1	Unpaved Roads	5.97	5.97	1.59	0.16	-	-	-	-	-	-	-	-	-
	-		-		Auxiliary Ec	quipment				_		-	-		
EGEN1	EGEN1	Emergency Generator 1	0.026	0.026	0.026	0.026	0.49	0.460	0.035	0.00087	-	-	0.00066	0.0022	91.62
EFWP1	EFWP1	Emergency Fire Water Pump 1	0.0049	0.0049	0.0049	0.0049	0.09	0.086	0.007	0.00016	-	-	0.00012	0.00041	17.18
DSLTK-GEN1	DSLTK-GEN1	Diesel Storage Tank for Emergency Generator No. 1	-	-	-	-	-	-	0.00036	-	-	-	0.000144	0.000188	-
DSLTK-FWP1	DSLTK-FWP1	Diesel Storage Tank for Fire Water Pump No. 1	-	-	-	-	-	-	0.00036	-	-	-	0.000144	0.000188	-
DSLTK-VEH	DSLTK-VEH	Diesel Storage Tank Supporting On-Site Vehicles	-	-	-	-	-	-	0.0036	-	-	-	0.00142	0.00186	-
TORCH1		Cutting Torches	0.20	0.20	0.20	0.20	9.13E-02	5.29E-02	5.62E-03	7.02E-03	3.15E-07	-	1.13E-03	1.19E-03	89.39
Total	Total		67	155	145	<i>139</i>	137	1,328	100	101	0.53	3.29	1.69	2.84	157,635
ollutant Attainment S	tatus		-	-	Attainment	Attainment	Attainment	Attainment	Attainment	Attainment	Attainment	-	-	-	-
otentially Applicable I	Major NSR Pro	ogram	PSD	-	PSD	PSD	PSD	PSD	PSD	PSD	PSD	PSD	-	-	PSD
lajor NSR "Major Sou			100	-	100	100	100	100	100	100	100	100	-	-	-
itle V Threshold ⁴			100	-	100	100	100	100	100	100	-	-	10	25	100,000
roject Exceeds Major NSR "Major Source" Threshold?			No	-	Yes	Yes	Yes	Yes	Yes	Yes	No	No	-	-	Ňo
roject Exceeds Title V Thresholds?			No	-	Yes	Yes	Yes	Yes	Yes	Yes	-	-	No	No	Yes
D Significant Emission Rates (SERs) ³			25	-	15	10	40	100	40	40	0.6	3	-	-	75,000
roject Meets or Excee			Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	-	-	Yes

Table A-20. Site-Wide Emissions Increase Summary - Annual

¹ Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.

² Major source per 40 CFR 52.21(b). NOx is a regulated NSR pollutant for purposes of evaluating PSD applicability because NOx, as measured in the ambient air as nitrogen dioxide (NO2), is a pollutant for which a national ambient air quality standard (NAAQS) has been promulgated (see 40 CFR 50.11). ³ PSD Significant Emission Rates (SERs) as defined in 40 CFR 52.21.

⁴ VOC is not a criteria pollutant but is considered to be a precursor to ozone. Stated value corresponds to the ozone threshold.

⁵ Max Single HAP is Manganese

	RBLC ID	Facility	Permit Date (from RBLC)	Productio	n Capacity tpy)	-	ed CO Limit	Control
			(Value	Unit	Value	Unit	
				Facilities With F	Permits Issued Aft	er 2016 ¹		
EAF/LMF	WV-0034	Nucor Steel West Virginia	5/5/2022	3,000,000	tons steel/yr	2.02	lb/ton	Good Combustion Practices
EAFs and LMFs	AR-0173	BIG RIVER STEEL LLC	1/31/2022	250	tons steel/hr	2.02	lb/ton	Scrap Management Plan and Good Operating Practices
SN-01 EAF	AR-0172	STEEL MILL	9/1/2021	250	tons steel/hr	3	lb/ton	Direct Shell Evacuation
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	-	Steel Mill Mini	4/19/2021	2,000,000	tons steel/yr	2	lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)		Steel Mill	7/23/2020	1,750,000	tons steel/yr	1.98	lb/ton	The facility is equipped with Continuous Emission Monitors (CEMS) to enable real- time monitoring of CO emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.
ELECTRIC ARC FURNACE	-	Steel Mill	1/20/2020	-	-	3.275	lb/ton	GOOD COMBUSTION PRACTICES
Electric Arc Furnaces (EAF)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	2.02	lb/ton	GOOD COMBUSTION PRACTICES, CLEAN
Ladle Metallurgical Stations (LMS)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	2.02	lb/ton	GOOD COMBUSTION PRACTICES, CLEAN
Electric Arc Furnaces (EAF)	OH-0383	Steel Mill Mini	1/17/2020	-	-	2.02	lb/ton	GOOD COMBUSTION PRACTICES, CLEAN FUEL
ELECTRIC ARC FURNACE	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	3.275	lb/ton	GOOD COMBUSTION PRACTICES
MELT SHOP LADLE PREHEATERS	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	-	-	GOOD COMBUSTION PRACTICES
Electric Arc Furnace #2 (P905)	*OH-0381	LLC	09/27/2019	250	tons steel/hr	500	lb/hr	DEC systems with air gap
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	11603.57	ton/yr, rolling 12- month period	DEC systems with air gap

Table B-1. EAF/LMS Recent Permit Limitations and Determinations of BACT for CO (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)		n Capacity tpy)	Permitte	d CO Limit	Control
			(Value	Unit	Value	Unit	
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	LLC	9/27/2019	250	tons steel/hr	500	lb/hr	DEC systems with air gap
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	LLC	9/27/2019	250	tons steel/hr	11603.57	ton/yr	DEC systems with air gap
Electric Arc Furnaces	*AL-0327	NUCOR STEEL DECATUR, LLC	08/14/2019	-	-	2.3	lb/ton	Direct evacuation control
Electric Arc Furnaces	*AL-0327	NUCOR STEEL DECATUR, LLC	08/14/2019	-	-	1240	lb/hr	Direct evacuation control
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hr	4.4	lb/ton	Direct Evacuation System
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	2/14/2019	450,000	tons steel/yr	3.5	lb/ton, average of 3 one hour runs	DEC system, use of a scrap management plan & good combustion practices
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	2/14/2019	450,000	tons steel/yr	210	lb/hr, average of 3 one hour runs	DEC system, use of a scrap management plan & good combustion practices
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	2	lb/ton, averaged monthly	-
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	70.69	ton/yr	-
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	18.55	lb/hr	Direct-Shell Evacuation Control and CO reaction chamber
Electric Arc Furnace and Ladle Metallurgy Furnace	TX-0848	STEEL MILL	09/14/2018	-	-	2	lb/ton	good combustion
Electric Arc Furnace	-	Nucor Sedalia, MO	9/12/2018	450,000	tons steel/yr	3.5	lb/ton	Baghouse/DEC
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	4	lb/ton	Use of air flaps in Consteel DEC to maximize CO combustion. Employ good combustion practices
ELECTRIC ARC FURNACE	*NE-0063	DIVISION	11/07/2017	1,350,000	tons steel/yr	3.1	lb/ton	BAGHOUSE
Melt Shop	SC-0188	CMC STEEL SOUTH CAROLINA	10/3/2017	1,000,000	tons billet/yr	1.7	lb/ton	Good combustion practices with the use of Direct Evacuation Control (DEC)

Table B-1. EAF/LMS Recent Permit Limitations and Determinations of BACT for CO (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Productio	n Capacity tpy)		d CO Limit	Control
				Value	Unit	Value	Unit	
Electric Arc Furnace (P900)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	356.4	lb/hr	Direct Evacuation Control (DEC) system with adjustable air gap and water-cooled elbow and duct
Electric Arc Furnace (P900)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	3.24	lb/ton	Direct Evacuation Control (DEC) system with adjustable air gap and water-cooled elbow and duct
Ladle Metallurgy Furnace (P901)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	33	lb/hr	-
Ladle Metallurgy Furnace (P901)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	126.32	ton/yr	-
Electric Arc Furnace	AL-0319	NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	-	-	2.2	lb/ton	-
Electric Arc Furnace	AL-0319	NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	-	-	660	lb/hr	-
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	2.3	lb/ton	DIRECT EVACUATION CONTROL
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	1012	lb/hr	DIRECT EVACUATION CONTROL
Electric Arc Furnace	OK-0173	CMC Durant, OK	1/19/2016	-	-	4	lb/ton	Pre-cleaned scrap.
				Facilities With F	Permits Issued Ber	fore 2016		
Fume Treatment Plant (EAF)	LA-0309	BENTELER STEEL TUBE FACILITY	6/4/2015	90	tons steel/hr	4.8	lb/ton	-
FG-MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	2	lb/ton	Direct Evacuation Control (DEC) and Co Reaction Chamber
FG-MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	260	lb/hr	Direct Evacuation Control (DEC) and Co Reaction Chamber
Electric Arc Furnace	TX-0705	STEEL MINIMILL FACILITY	07/24/2014	1,300,000	tons steel/yr	1.3273	lb/ton	Good combustion practices with the operation of a DEC as the method typically employed to control CO.
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	2	lb/ton	-
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	383.3	lb/hr	-
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	2.27	lb/ton	GOOD COMBUSTION PRACTICE

Table B-1. EAF/LMS Recent Permit Limitations and Determinations of BACT for CO (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)		on Capacity tpy)	Permitte	d CO Limit	Control
				Value	Unit	Value	Unit	
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	0.174	lb/ton	GOOD COMBUSTION PRACTICE
EAFS SN-01 AND SN- 02	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	-	2	lb/ton	-
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	2	lb/ton	-
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	1004	lb/hr	-
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	2	lb/ton	Direct Evacuation Control (DEC) and Co Reaction Chamber
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	260	lb/hr	Direct Evacuation Control (DEC) and Co Reaction Chamber
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	2	lb/ton	Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct.
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	1200	ton/yr	Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct.
LADLE METALLURGY SN-01	AR-0138	NUCOR CORPORATION - NUCOR STEEL, ARKANSAS	2/17/2012	-	-	0.02	lb/ton	-

Table B-1. EAF/LMS Recent Permit Limitations and Determinations of BACT for CO (Prior 10 years)

¹ The CMC Mesa, Nucor Sedalia, and Gerdau Ameristeel facilities were not in the RBLC but they are ECS processes/micro mills and are similar to the proposed facility.

* Indicates that the facilities are draft determination in the RBLC database.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production	n Capacity tpy)	Permitted	NO _x Limit	Control
			(Value	Unit	Value	Unit	
				Facilities V	Vith Permits Issued	After 2016 ¹		
EAF/LMF	WV-0034	Nucor Steel West Virginia	5/5/2022	3,000,000	tons steel/yr	56.86	lb/hr	EAF - Oxyfuel Burners LMF - Good Combustion Practices
EAFs and LMFs	AR-0173	BIG RIVER STEEL LLC	1/31/2022	250	tons steel/hr	0.35	lb/ton	Scrap Management Plan and Good Operating Practices
SN-01 EAF	AR-0172	Nucor Steel Arkansas	9/1/2021	250	tons steel/hr	2.2	lb/ton	Low Nox Burners
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	-	Steel Mill	7/23/2021	1,750,000	tons steel/yr	0.42	lb/ton	The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of NOx emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	-	Steel Mini Mill	4/19/2021	2,000,000	tons steel/yr	0.42	lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan. New equipment in the meltshop is equipped with low-NOx burners (70 lb/MMscf).
ELECTRIC ARC FURNACE	-	Steel Mill	1/20/2020	-	-	0.58	lb/ton	GOOD COMBUSTION PRACTICES
Electric Arc Furnaces (EAF)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	0.35	lb/ton	ELECTRIC
Ladle Metallurgical Stations (LMS)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	0.35	lb/ton	GOOD COMBUSTION PRACTICES, CLEAN FUEL
Electric Arc Furnaces (EAF)	-	SDSW Steel, TX	1/17/2020	-	-	0.35	lb/ton	ELECTRIC
ELECTRIC ARC FURNACE	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	0.58	lb/ton	GOOD COMBUSTION PRACTICES
MELT SHOP LADLE PREHEATERS	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	-	-	GOOD COMBUSTION PRACTICES
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	105	lb/hr	DEC systems with air gap
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	828.5	ton/yr per 12-month rolling period	DEC systems with air gap
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	105	lb/hr	DEC systems with air gap
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	828.5	ton/yr per 12-month rolling period	DEC systems with air gap

Table B-2. EAF/LMS Recent Permit Limitations and Determinations of BACT for NOx (Prior 10 years)

Process	RBLC ID	h Facility	Permit Date (from RBLC)		n Capacity tpy)	Permitte	d NO _x Limit	Control
			(******************	Value	Unit	Value	Unit	
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	0.42	lb/ton	Oxy-fuel fired burners
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	226.8	lb/hr	Oxy-fuel fired burners
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hr	0.34	lb/ton	-
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	2/14/2019	450,000	tons steel/yr	0.3	lb/ton	Oxy-fuel burners on the EAF, DEC System and baghouse controls.
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	2/14/2019	450,000	tons steel/yr	18	lb/hour, average of 3 one hour runs	Oxy-fuel burners on the EAF, DEC System and baghouse controls.
EUEAF (Electric arc furnace)	MI-0438	Gerdau Macsteel, MI	10/29/2018	130	tons steel/hr	0.27	lb/ton	Real time process optimization (RTPO) combustion controls and oxy-fuel burners.
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	35.1	lb/hr	Real time process optimization (RTPO) combustion controls and oxy-fuel burners.
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	gerdau Macsteel Monroe	10/29/2018	130	tons steel/hr	10.3	lb/hr	-
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	42.23	ton/yr per 12-month rolling period	-
Electric Arc Furnace and Ladle Metallurgy Furnace	TX-0848	STEEL MILL	09/14/2018	-	-	0.158	lb/ton	Oxy-fuel burners
Electric Arc Furnace	-	Nucor Sedalia, MO	9/12/2018	450,000	tons steel/yr	0.3	lb/ton	Baghouse/DEC
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	0.3	lb/ton	Use of good furnace melting practices and oxy-fuel burners to reduce NOx emissions. Employ good combustion practices
ELECTRIC ARC FURNACE	*NE-0063	Nucor Norfolk, NE	11/07/2017	1,350,000	tons steel/yr	0.42	lb/ton	BAGHOUSE
Electric Arc Furnace	AL-0323	OUTOKUMPU STAINLESS USA, LLC	06/13/2017	-	-	0.6	lb/ton	Direct Evacuation Control
Electric Arc Furnace	AL-0323	OUTOKUMPU STAINLESS USA, LLC	06/13/2017	-	-	75.6	lb/hr	Direct Evacuation Control
Electric Arc Furnace	AL-0319	Nucor Tuscaloosa, AL	03/09/2017	-	-	0.35	lb/ton	-
Electric Arc Furnace	AL-0319	Nucor Tuscaloosa, AL	03/09/2017	-	-	105	lb/hr	-

Table B-2. EAF/LMS Recent Permit Limitations and Determinations of BACT for NOx (Prior 10 years)

Table B-2. EAF/LMS Recent Permit Limitations and Determinations of BACT for NOx (P	rior 10 v	vears)	

Process	RBLC ID	Facility	Permit Date (from RBLC)		n Capacity tpy)	Permitted	NO _x Limit	Control
			(· · · · · · · · · · · · · · · · · · ·	Value	Unit	Value	Unit	
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	0.42	lb/ton	OXY-FUEL BURNERS
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	184.8	lb/hr	OXY-FUEL BURNERS
Electric Arc Furnace	OK-0173	CMC Durant, OK	1/19/2016	-	-	0.3	lb/ton	Oxy-firing.
. unideo				Facilities V	Nith Permits Issued	Before 2016		
Fume Treatment Plant (EAF)	LA-0309	BENTELER STEEL TUBE FACILITY	6/4/2015	90	tons steel/hr	0.35	lb/ton	-
FG-MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	0.2	lb/ton	No controls. Real time process optimization (combustion controls) and the use of oxy-fuel burners.
FG-MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	26	lb/hr	No controls. Real time process optimization (combustion controls) and the use of oxy-fuel burners.
Electric Arc Furnace	TX-0705	STEEL MINIMILL FACILITY	07/24/2014	1,300,000	tons steel/yr	0.2159	lb/ton	Good Combustion and/or Process Operation including an EAF carbon injection and furnace burner system that injects carbon and oxygen into the metal/slag interface.
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	0.28	lb/ton	-
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	53.67	lb/hr	-
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	0.9	lb/ton	OXY FIRED BURNERS
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	0.548	lb/ton	GOOD COMBUSTION PRACTICE
EAFS SN-01 AND SN-02	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	-	0.3	lb/ton	-
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	0.35	lb/ton	
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	175.7	lb/hr	-
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	0.2	lb/ton	Real time process optimization (combustion controls) and the use of oxy-fuel burners.
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	26	lb/hr	Real time process optimization (combustion controls) and the use of oxy-fuel burners.

Process	RBLC ID	Facility	Permit Date (from RBLC) Production Cap			Permitted	NO _x Limit	Control
				Value	Unit	Value	Unit	
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	0.5	lb/ton	-
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	300	ton/yr per 12-month rolling period	-

Table B-2. EAF/LMS Recent Permit Limitations and Determinations of BACT for NOx (Prior 10 years)

¹ The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility. * Indicates that the facilities are draft determination in the RBLC database.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Productio	n Capacity tpy)	Permitteo	I SO ₂ Limit	Control
			. ,	Value	Unit	Value	Unit	
				Facilities Wit	th Permits Issued Aft	ter 2016 ¹		
EAF/LMF	WV-0034	Nucor Steel West Virginia	5/5/2022	3,000,000	tons steel/yr	38.99	lb/hr	Scrap Management Plan and Lime Fluxing
EAFs and LMFs	AR-0173	Big River Steel, AR	1/31/2022	250	tons steel/hr	0.2	lb/ton	Scrap Management Plan
SN-01 EAF	AR-0172	Nucor Blytheville, AR	9/1/2021	250	tons steel/hr	0.2	lb/ton	Good Operating Practices
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	-	Steel Mini Mill	4/19/2021	2,000,000	tons steel/yr	0.35	lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and the permittee shall limit the sulfur content of the EAF feedstock utilizing scrap management and/or shall add appropriate fluxes to the charge such that the emission limitations for SO2 are met.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	-	STEEL MILL	7/23/2020	1,750,000	tons steel/yr	0.35	lb/ton	The facility is equipped with Continuous Emission Monitors (CEMS) to enable real- time monitoring of SO2 emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.
Electric Arc Furnaces (EAF)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	0.24	lb/ton	CLEAN SCRAP
Ladle Metallurgical Stations (LMS)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	0.24	lb/ton	CLEAN SCRAP
Electric Arc Furnaces (EAF)	-	SDSW Steel, TX	1/17/2020	-	-	0.24	lb/ton	CLEAN SCRAP
ELECTRIC ARC FURNACE	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	0.216	lb/ton	CLEAN SCRAP
MELT SHOP LADLE PREHEATERS	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	-	-	CLEAN FUEL AND SCRAP
ELECTRIC ARC FURNACE	-	STEEL MANUFACTURING FACILITY	1/2/2020	-	-	0.216	lb/ton	CLEAN SCRAP
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	87.5	lb/hr	The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process.
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	575.9	ton/yr per 12-month rolling period	The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process.

Table B-3. EAF/LMS Recent Permit Limitations and Determinations of BACT for SO₂ (Prior 10 years)

Table B-3. EAF/	LMS Recent	t Permit Limitations	and Determina	tions of BACT for SO	2 (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	(IIS fov)		Permitted	I SO ₂ Limit	Control
			(Value	Unit	Value	Unit	
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	87.5	lb/hr	The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process.
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	575.9	ton/yr per 12-month rolling period	The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process.
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	0.35	lb/ton	Low sulfur injection carbon (less than or equal to 2% sulfur)
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	189	lb/hr	Low sulfur injection carbon (less than or equal to 2% sulfur)
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hr	0.16	lb/ton	-
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	0.6	lb/ton	Use of natural gas fuel, low-sulfur available carbon-based feed and charge material, as well as good combustion and/or process operations
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	36	lb/hr, 30 day rolling average	Use of natural gas fuel, low-sulfur available carbon-based feed and charge material, as well as good combustion and/or process operations
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	0.25	lb/ton	lime coating of the baghouse bags.
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	32.5	lb/hr	lime coating of the baghouse bags.
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	13.05	lb/hr	lime coated baghouse bags
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	45.22	ton/yr per 12-month rolling period	lime coated baghouse bags
Electric Arc Furnace and Ladle Metallurgy Furnace	TX-0848	STEEL MILL	09/14/2018	-	-	0.23	lb/ton	scrap management
Electric Arc Furnace	-	Nucor Sedalia, MO	9/12/2018	450,000	tons steel/yr	0.5	lb/ton	Good process control
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	0.3	lb/ton	Use good process operation practices, scrap management and proper management of carbon injection. Employ good combustion practices

Process	RBLC ID	Facility	Permit Date (from RBLC)	(IIS fnv)		Permitted	SO ₂ Limit	Control
				Value	Unit	Value	Unit	
Electric Arc Furnace (P900)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	1.51	lb/ton	Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD.
Electric Arc Furnace (P900)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	166.16	lb/hr	Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD.
Ladle Metallurgy Furnace (P901)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	1.51	lb/ton	Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD.
Ladle Metallurgy Furnace (P901)	OH-0373	CHARTER STEEL - CLEVELAND INC	10/02/2017	110	tons steel/hr	166.16	lb/hr	Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD.
Electric Arc Furnace	AL-0323	Outokumpu Stainless, AL	06/13/2017	-	-	0.375	lb/ton	-
Electric Arc Furnace	AL-0323	Outokumpu Stainless, AL	06/13/2017	-	-	47.25	lb/hr	-
Electric Arc Furnace	AL-0319	Nucor Tuscaloosa, AL	03/09/2017	-	-	0.44	lb/ton	-
Electric Arc Furnace	AL-0319	Nucor Tuscaloosa, AL	03/09/2017	-	-	132	lb/hr	-
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	0.35	lb/ton	LOW SULFUR CHARGE CARBON (< 2.0 % SULFUR BY WEIGHT)

Table B-3. EAF/LMS Recent Permit Limitations and Determinations of BACT for SO₂ (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)		Permitted SO ₂ Limit		Control
			(,	Value	Unit	Value	Unit	
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	154	lb/hr	LOW SULFUR CHARGE CARBON (< 2.0 % SULFUR BY WEIGHT)
Electric Arc Furnace	OK-0173	CMC Durant, OK	01/19/2016	-	-	0.6	lb/ton	-
				Facilities Wit	th Permits Issued Be	fore 2016		
Fume Treatment Plant (EAF)	LA-0309	BENTELER STEEL TUBE FACILITY	6/4/2015	90	tons steel/hr	0.6	lb/ton	Scrap management plan
FG-MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	0.2	lb/ton	-
FG-MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	26	lb/hr	-
Electric Arc Furnace	TX-0705	STEEL MINIMILL FACILITY	07/24/2014	1,300,000	tons steel/yr	0.4	lb/ton	The EAF currently combusts sweet natural gas and low-sulfur carbon feedstock, and uses good management practices to prevent feeding unnecessary sulfur containing materials to the steel producing process.
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	1.5	lb/ton	-
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	546.26	lb/hr	-
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	1.76	lb/ton	GOOD PROCESS OPERATION AND SCRAP MANAGEMENT
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	1.76	lb/ton	GOOD PROCESS OPERATION AND SCRAP MANAGEMENT
EAFS SN-01 AND SN-02	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	-	0.18	lb/ton	SCRAP MANAGEMENT PLAN
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	0.33	lb/ton	-
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	167	lb/hr per 3-hour block average	-
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	0.2	lb/ton	-
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	26	lb/hr	-
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	0.39	lb/ton	-
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	234	ton/yr per 12-month rolling period	-
LADLE METALLURGY SN- 01	AR-0138	NUCOR CORPORATION · NUCOR STEEL, ARKANSAS	02/17/2012	-	-	0.102	lb/ton	-

¹ The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

* Indicates that the facilities are draft determination in the RBLC database.

Process	RBLC ID	ecent Permit Limitatio Facility	Permit Date	Productio	n Capacity tpy)	Particulate Matter Type	Permitted PM Limit		Control
FIOCESS	KBLC ID	racinty	(from RBLC)	Value	Unit		Value	Unit	
			Electric Arc Fu	ırnaces NSPS AAa	3% Opacity from control).0052 gr/dscf) device, 6% opacity from AF			
		Electric A	rc Furnaces Ma	ajor Sources NES	IAP EEEEE			gr/dscf f total metal HAP	
	Ir	ntegrated Iron and Ste	el Manufacturi	ng Facilities Majo	Oxygen Process 0.1 gr/dscf for ladle m	netallurgy at a new Basic Furnace (BOPF) etallurgy at an existing ess Furnace (BOPF)			
		Electric A	rc Furnaces Ar	rea Sources NESH	ΑΡ ΥΥΥΥΥ		0.8 lb/ton for production).0052 gr/dscf) capacity < 150,000 tons y from EAF	
		New Large Iron a	and Steel Foun	daries Area Sourc	es NESHAP ZZZZZ		0.008 lb me 20% opacity from fug	b/ton tal HAP/ton itive emissions (6 min age)	
					Facilities	With Permits Issued After	2016 1		
EAF/LMF	WV-0034	Nucor Steel, WV	5/5/2022	3,000,000	tons steel/yr	Particulate matter, total < 10 μ (TPM10)	0.0052	gr/dscf	Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each
EAF/LMF	WV-0034	Nucor Steel, WV	5/5/2022	3,000,000	tons steel/yr	Particulate matter, total < 2.5 µ (TPM2.5)	0.0052	gr/dscf	Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each
EAF/LMF	WV-0034	Nucor Steel, WV	5/5/2022	3,000,000	tons steel/yr	Particulate matter, filterable (FPM)	0.0018 gr/dscf		Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each
EAF/LMF	AR-0173	BIG RIVER STEEL LLC	1/31/2022	250	tons steel/hr	Particulate matter, filterable (FPM)	0.0018	gr/dscf	Fabric Filter
SN-01 EAF	AR-0172	Nucor Steel Arkansas	9/1/2021	250	tons steel/hr	Particulate matter, total < 10 μ (TPM10) Particulate matter, total < 2.5 μ (TPM2.5) Particulate matter, filterable		gr/dscf	Fabric Filter

Table B-4. EAF/LMS Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Table B-4. EAF/LMS Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	ID Facility	Permit Date		n Capacity tpy)	Particulate Matter Type	Permitted PM Limit		Control
FIOCESS	KBEC ID	racinty	(from RBLC)	Value	Unit		Value	Unit	control
SN-01 EAF	-	STEEL MILL	9/1/2021	585	tons steel/yr	PM10	0.0052	gr/dscf	BAGHOUSE
SN-01 EAF	-	STEEL MILL	9/1/2021	585	tons steel/yr	PM2.5	0.052	gr/dscf	BAGHOUSE
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	-	Steel Mini Mill	4/19/2021	2,000,000	tons steel/yr	РМ	31.49	lb/hr	Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non- combustion processes must develop a Good
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	-	Steel Mini Mill	4/19/2021	2,000,000	tons steel/yr	PM10	90.97	lb/hr	Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non- combustion processes must develop a Good
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	-	Steel Mini Mill	4/19/2021	2,000,000	tons steel/yr	PM2.5	59.48	lb/yr	Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non- combustion processes must develop a Good
Melt Shop (EU 01) & Melt Shop Combustion Sources	-	Steel Mill	7/23/2020	1,750,000	tons steel/yr	РМ	0.0018	gr/dscf	Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE).
Melt Shop (EU 01) & Melt Shop Combustion Sources	-	STEEL MILL	7/23/2020	1,750,000	tons steel/yr	PM10	0.0052	gr/dscf	Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE).
Melt Shop (EU 01) & Melt Shop Combustion Sources	-	STEEL MILL	7/23/2020	1,750,000	tons steel/yr	PM2.5	0.0034	gr/dscf	Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE).
ELECTRIC ARC FURNACE	-	STEEL MILL	1/20/2020	-	-	PM10	-	-	-
ELECTRIC ARC FURNACE	-	STEEL MILL	1/20/2020	-	-	PM2.5	-	-	-
Electric Arc Furnaces (EAF)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	Particulate matter, filterable (FPM)	0.0052	gr/dscf	BAGHOUSE
Electric Arc Furnaces (EAF)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	Particulate matter, filterable < 10 µ (FPM10)	0.0052	gr/dscf	BGAHOUSE

Process	RBLC ID	Facility	Permit Date	Production Capacity (US tpy)		Particulate Matter Type	Permitter	I PM Limit	Control
FIOLESS	KBLC ID	racinty	(from RBLC)	Value	Unit		Value	Unit	
Electric Arc Furnaces (EAF)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	Particulate matter, filterable < 2.5 μ (FPM2.5)	0.0052	gr/dscf	BAGHOUSE
Electric Arc Furnaces (EAF)	-	SDSW STEEL MILL	1/17/2020	-	-	РМ	0.0052	gr/dscf	BAGHOUSE
Electric Arc Furnaces (EAF)	-	SDSW STEEL MILL	1/17/2020	-	-	PM10	-	-	-
Electric Arc Furnaces (EAF)	-	SDSW STEEL MILL	1/17/2020	-	-	PM2.5	-	-	-
ELECTRIC ARC FURNACE	-	Steel Mill	1/2/2020	-	-	-	-	-	-
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, filterable (FPM)	19.93	lb/hr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, filterable (FPM)	87.69	ton/yr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, fugitive	20.96	ton/yr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;

Table B-4. EAF/LMS Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	Eacility	Permit Date	ninations of BACT Production (US		Particulate Matter Type	Permitter	l PM Limit	Control
Flocess	KBLC ID	racincy	(from RBLC)	Value	Unit		Value	Unit	Control
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 10 µ (TPM10)	26.57	lb/hr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	116.38	ton/yr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	26.57	lb/hr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	116.38	ton/yr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;

Process	RBLC ID	ecent Permit Limitatio	Permit Date	Production (US	n Capacity	Particulate Matter Type	Permittee	I PM Limit	Control
FIOCESS	KBEC ID	raciity	(from RBLC)	Value	Unit		Value	Unit	control
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, filterable (FPM)	19.93	lb/hr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, filterable (FPM)	87.69	ton/yr per 12-month rolling period	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	26.57	lb/hr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	116.38	ton/yr per 12-month rolling period	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;

Process	RBLC ID	ecent Permit Limitatio Facility	Permit Date	Production	n Capacity tpy)	Particulate Matter Type	Permittee	l PM Limit	Control
Process	KBLC ID	racincy	(from RBLC)	Value	Unit		Value	Unit	
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 2.5 µ (TPM2.5)	26.57	lb/hr	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	116.38	ton/yr per 12-month rolling period	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	Particulate matter, fugitive	20.96	ton/yr per 12-month rolling period	Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	Particulate matter, filterable (FPM)	0.0018	gr/dscf	Baghouse
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	Particulate matter, filterable (FPM)	33.9	lb/hr	Baghouse
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	Particulate matter, total (TPM)	0.0052	gr/dscf	Baghouse
Electric Arc Furnaces	*AL-0327	Nucor Decatur, AL	08/14/2019	-	-	Particulate matter, total (TPM)	98.1	lb/hr	Baghouse
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hr	PM10 Filterable	0.05	lb/ton	Fabric Filter
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hr	PM10 Filterable + Condensable	0.24	lb/ton	Fabric Filter
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	Particulate matter, filterable (FPM)	0.0018	gr/dscf	Baghouse
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	Particulate matter, filterable (FPM)	9.24	lb/hr, average of 3 one- hour runs	Baghouse

Table B-4. EAF/LMS Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years	5)
--	----

Process	RBLC ID	ecent Permit Limitatio	Permit Date	Productio	n Capacity tpy)	Particulate Matter Type	Permitte	d PM Limit	Control
Flocess	KBLC ID	Facility	(from RBLC)	Value	Unit		Value	Unit	
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	Particulate matter, total (TPM)	0.0024	gr/dscf	Baghouse
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	Particulate matter, total (TPM)	12.32	lb/hr, average of 3 one- hour runs	Baghouse
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, filterable (FPM)	7.84	lb/hr	Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags.
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, filterable (FPM)	32.15	ton/yr per 12-month rolling period	Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags.
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	12.91	lb/hr	Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags.
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	49.7	ton/yr per 12-month rolling period	Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags.
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	12.91	lb/hr	Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags.
EUEAF (Electric arc furnace)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	49.7	ton/yr per 12-month rolling period	Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags.
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, filterable (FPM)	0.0018	gr/dscf	Baghouse and evacuation system
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, filterable (FPM)	3.88	lb/hr	Baghouse and evacuation system
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	130	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	8.95	lb/hr	Baghouse and evacuation system

Process	RBLC ID	ecent Permit Limitatio Facility	Permit Date	Productio	n Capacity tpy)	Particulate Matter Type	Permitted	I PM Limit	Control
Flocess	KBLC ID	racinty	(from RBLC)	Value	Unit		Value	Unit	
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	gerdau Macsteel Monroe	10/29/2018	130	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	33.47	ton/yr per 12-month rolling period	Baghouse and evacuation system
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	gerdau Macsteel Monroe	10/29/2018	130	tons steel/hr	Particulate matter, total < 2.5 µ (TPM2.5)	0.0018	gr/dscf	Baghouse and evacuation system
Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD)	MI-0438	gerdau Macsteel Monroe	10/29/2018	130	tons steel/hr	Particulate matter, total < 2.5 µ (TPM2.5)	3.88	lb/hr	Baghouse and evacuation system
Electric Arc Furnace and Ladle Metallurgy Furnace	TX-0848	STEEL MILL	09/14/2018	-	-	Particulate matter, total < 10 µ (TPM10)	0.0024	gr/dscf	baghouse
Electric Arc Furnace and Ladle Metallurgy Furnace	TX-0848	STEEL MILL	09/14/2018	-	-	Particulate matter, total < 2.5 µ (TPM2.5)	0.002	gr/dscf	baghouse
Electric Arc Furnace	-	Nucor Sedalia, MO	9/12/2018	450,000	tons steel/yr	Filterable PM	0.0015	gr/dscf	Baghouse
Electric Arc Furnace	-	Nucor Sedalia, MO	9/12/2018	450,000	tons steel/yr	Total PM10, PM2.5, and PM	0.0024	gr/dscf	Baghouse
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	PM filterable	0.0018	gr/dscf	Use of DEC and Meltshop canopy hood for capture. Use of meltshop baghouse. Use of ladle station roof that shall be exhausted to the meltshop baghouse.
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	PM10 Filterable and Condensable	0.0024	gr/dscf	Use of DEC and Meltshop canopy hood for capture. Use of meltshop baghouse. Use of ladle station roof that shall be exhausted to the meltshop baghouse.

Process	RBLC ID	ecent Permit Limitatio Facility	Permit Date	Productio	n Capacity tpy)	Particulate Matter Type	Permitted	l PM Limit	Control
FIOCESS	KBLC ID	racinty	(from RBLC)	Value	Unit		Value	Unit	Concron
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	PM2.5 Filterable and Condensable	0.0024	gr/dscf	Use of DEC and Meltshop canopy hood for capture. Use of meltshop baghouse. Use of ladle station roof that shall be exhausted to the meltshop baghouse.
Melt Shop Equipment (electric arc furnaces fugitives)	SC-0183	NUCOR STEEL - BERKELEY	5/4/2018	175	tons steel/hr	Particulate matter, filterable (FPM)	-	-	Good work practice standards and proper operation and maintenance of baghouses.
Melt Shop	SC-0188	CMC STEEL SOUTH CAROLINA	10/3/2017	1,000,000	tons billet/yr	Particulate matter, filterable < 10 μ (FPM10)	0.0018	gr/dscf	Baghouse
Melt Shop	SC-0188	CMC STEEL SOUTH CAROLINA	10/3/2017	1,000,000	tons billet/yr	Particulate matter, filterable < 2.5 μ (FPM2.5)	0.0018	gr/dscf	Baghouse
Electric Arc Furnace	AL-0319	Nucor Tuscaloosa, AL	03/09/2017	-	-	Particulate matter, filterable (FPM)	0.0018	gr/dscf	-
Electric Arc Furnace	AL-0319	Nucor Tuscaloosa, AL	03/09/2017	-	-	Particulate matter, total < 10 µ (TPM10)	0.0052	gr/dscf	-
Electric Arc Furnace	AL-0319	Nucor Tuscaloosa, AL	03/09/2017	-	-	Particulate matter, total < 2.5 µ (TPM2.5)	0.0049	gr/dscf	-
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	Particulate matter, filterable (FPM)	0.0018	gr/dscf	BAGHOUSE
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	Particulate matter, filterable (FPM)	43.22	lb/hr	BAGHOUSE
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	Particulate matter, total (TPM)	0.0052	gr/dscf	BAGHOUSE

Process	RBLC ID	ecent Permit Limitatio Facility	Permit Date	Production	n Capacity tpy)	Particulate Matter Type	Permitted	l PM Limit	Control
FIOCESS	KBEC ID	racincy	(from RBLC)	Value	Unit	Particulate Matter Type	Value	Unit	control
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	Particulate matter, total (TPM)	124	lb/hr	BAGHOUSE
Electric Arc Furnace	OK-0173	CMC Durant, OK	01/19/2016	-	-	Particulate matter, total < 10 µ (TPM10)	0.0024	gr/dscf	P2 - Pre-cleaned Scrap Add-on - Baghouse
Electric Arc Furnace	OK-0173	CMC Durant, OK	01/19/2016	-	-	Particulate matter, total < 2.5 u (TPM2.5)	0.0024	gr/dscf	P2 - Pre-cleaned Scrap Add-on - Baghouse
randee					Facilitie	s With Permits Issued Before	e 2016		
Fume Treatment Plant (EAF)	LA-0309	BENTELER STEEL TUBE FACILITY	6/4/2015	90	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	0.0052	gr/dscf	baghouse
Fume Treatment Plant (EAF)	LA-0309	BENTELER STEEL TUBE FACILITY	6/4/2015	90	tons steel/hr	Particulate matter, total < 2.5 µ (TPM2.5)	0.0052	gr/dscf	baghouse
FG- MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	Particulate matter, total < 2.5 µ (TPM2.5)	0.1	lb/ton	Direct evacuation control (DEC), hood, and baghouse.
FG- MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	10.9	lb/hr	Direct evacuation control (DEC), hood, and baghouse.
Electric Arc Furnace	AL-0275	NUCOR STEEL TUSCALOOSA, INC.	07/22/2014	-	-	Particulate matter, filterable (FPM)	0.0018	gr/dscf	Baghouse
Electric Arc Furnace	AL-0275	NUCOR STEEL TUSCALOOSA, INC.	07/22/2014	-	-	Particulate matter, filterable < 10 µ (FPM10)	0.0052	gr/dscf	Baghouse
Electric Arc Furnace	AL-0275	NUCOR STEEL TUSCALOOSA, INC.	07/22/2014	-	-	Particulate matter, filterable < 2.5 µ (FPM2.5)	0.0049	gr/dscf	Baghouse
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	Particulate matter, total < 10 µ (TPM10)	0.0052	gr/dscf	The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions.
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	Particulate matter, total < 2.5 µ (TPM2.5)	0.0052	gr/dscf	The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions.

Process	RBLC ID	ecent Permit Limitatio	Permit Date	Productio	n Capacity tpy)	Particulate Matter Type	Permittee	l PM Limit	Control
Process	KBLC ID	Facility	(from RBLC)	Value	Unit	Particulate Matter Type	Value	Unit	Control
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	Particulate matter, filterable (FPM)	0.0008	gr/dscf	The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions.
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	Particulate matter, filterable < 10 µ (FPM10)	0.0008	gr/dscf	The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions.
ELECTRIC ARC FURNACE	NE-0055	NUCOR STEEL	10/09/2013	206	tons scrap/hr	Particulate matter, filterable < 2.5 µ (FPM2.5)	0.0008	dscf/min	The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions.
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, total (TPM)	0.0032	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, filterable < 10 μ (FPM10)	0.0032	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	0.0052	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, filterable < 2.5 μ (FPM2.5)	0.0032	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	0.0052	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, total < 10 µ (TPM10)	0.0052	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, filterable < 10 µ (FPM10)	0.0032	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, total < 2.5 µ (TPM2.5)	0.0052	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, filterable < 2.5 μ (FPM2.5)	0.0032	gr/dscf	EMCLOSURE, CAPTURE, FABRIC FILTER
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	Particulate matter, total (TPM)	0.0052	gr/dscf	ENCLOSURE, CAPTURE, FABRIC FILTER
EAFS SN-01 AND SN-02	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	-	Particulate matter, total < 2.5 μ (TPM2.5)	0.0024	gr/dscf	FABRIC FILTER

	, <u>, , , , , , , , , , , , , , , , , , </u>	ecent Permit Limitatio		Productio	n Capacity		Permitted	PM Limit	
Process	RBLC ID	Facility	Permit Date	(US	tpy)	Particulate Matter Type			Control
			(from RBLC)	Value	Unit		Value	Unit	
EAFS SN-01 AND SN-02	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	-	Particulate matter, filterable (FPM)	0.0018	gr/dscf	BAGHOUSE
EAFS SN-01 AND SN-02	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	-	Particulate matter, total < 10 μ (TPM10)	0.0024	gr/dscf	BAGHOUSE FOR FILTERABLE
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	Particulate matter, filterable (FPM)	0.0018	gr/dscf	BAGHOUSE
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	Particulate matter, filterable < 10 μ (FPM10)	0.0052	gr/dscf	MELTSHOP BAGHOUSES 1 AND 2 - CONTROLLING 2 EAFS, 1 AOD, 1 DESULFURIZATION STATION, 2 CONTNUOUS CASTERS AND 3 LMFS
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	Particulate matter, filterable < 2.5 μ (FPM2.5)	0.0052	gr/dscf	MELTSHOP BAGHOUSE 1 AND 2 - CONTROLLING 2 EAFS, 1 AOD, 1 DESULFURIZATION STATION, 2 CONTINUOUS CASTERS AND 3 LMFS
Melt Shop (FG- MELTSHOP)	MI-0404	gerdau Macsteel, Inc.	01/04/2013	130	tons liquid steel/hr	Particulate matter, total < 10 µ (TPM10)	0.1	lb/ton	Direct Evacuation Control (DEC), hood, and baghouse
Melt Shop (FG- MELTSHOP)	MI-0404	gerdau Macsteel, Inc.	01/04/2013	130	tons liquid steel/hr	Particulate matter, total < 10 μ (TPM10)	13	lb/hr	Direct Evacuation Control (DEC), hood, and baghouse
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	Particulate matter, filterable (FPM)	0.0052	gr/dscf	Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct to Baghouse
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	Particulate matter, total < 10 μ (TPM10)	0.0034	gr/dscf	Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct to Baghouse
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	Particulate matter, total < 2.5 μ (TPM2.5)	0.0033	gr/dscf	Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct to Baghouse

¹ The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

* Indicates that the facilities are draft determination in the RBLC database.

Process	RBLC ID	Facility	Permit Date		n Capacity tpy)	Permitte	d VOC Limit	Control
			(from RBLC)	Value	Unit	Value	Unit	
				Facili	ties With Permits Issued	After 2016 ¹		
EAF/LMF	WV-0034	Nucor Steel West Virginia	5/5/2022	3,000,000	tons steel/yr	15.92	lb/hr	EAF - Good Combustion Practices/Scrap Management Plan LMF - Scrap Management Plan
EAFs and LMFs	AR-0173	Big River Steel LLC	1/31/2022	250	tons steel/hr	0.093	lb/ton	Scrap Management System and Good Operating Practices
SN-01 EAF	AR-0172	Nucor Steel Arkansas	9/1/2021	250	tons steel/hr	0.093	lb/ton	Scrap Management System
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	-	Steel Mini Mill	4/19/2021	2,000,000	tons steel/yr	0.09	lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non- combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	-	STEEL MILL	7/23/2020	1,750,000	tons steel/yr	0.09	lb/ton	All EPs are required to have either a Good Work Practices (GWP) Plan or a Good Combustion & Operating Practices (GCOP) Plan.
ELECTRIC ARC FURNACE	-	Steel Mill	1/20/2020	-	-	0.22	lb/ton	work practices and material inspections, minimize any chlorinated plastics and free organic liquids, including draining any used oil filters
Electric Arc Furnaces	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	0.093	lb/ton	CLEAN SCRAP
Ladle Metallurgical	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	0.093	lb/ton	CLEAN SCRAP
Electric Arc Furnaces (EAF)	-	Steel Mini Mill	1/17/2020	-	-	0.093	lb/ton	CLEAN SCRAP
ELECTRIC ARC FURNACE	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	0.22	lb/ton	work practices and material inspections, minimize any chlorinated plastics and free organic liquids, including draining any used oil filters
MELT SHOP LADLE PREHEATER S	*TX-0867	STEEL MANUFACTURING FACILITY	01/02/2020	-	-	-	-	GOOD COMBUSTION PRACTICES
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	87.5	lb/hr	The development, implementation, and maintenance of a scrap management plan.

Process	RBLC ID	Facility	Permit Date	Production (US	n Capacity	Permitted	VOC Limit	Control
1100005	NDEC ID	Tuency	(from RBLC)	Value	Unit	Value	Unit	Control
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	712.5	ton/yr per 12-month rolling period	The development, implementation, and maintenance of a scrap management plan.
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	87.5	lb/hr	The development, implementation, and maintenance of a scrap management plan.
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	712.5	ton/yr per 12-month rolling period	The development, implementation, and maintenance of a scrap management plan.
Electric Arc Furnaces	*AL-0327	NUCOR STEEL DECATUR, LLC	08/14/2019	-	-	0.13	lb/ton	Scrap management program
Electric Arc Furnaces	*AL-0327	NUCOR STEEL DECATUR, LLC	08/14/2019	-	-	70.2	lb/hr	Scrap management program
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hr	0.34	lb/ton	-
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	0.3	lb/ton	Good combustion practice and process control along with a scrap management plan
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	18	lb/hr per 3-hr average	Good combustion practice and process control along with a scrap management plan
Electric Arc Furnace and Ladle Metallurgy Furnace	TX-0848	STEEL MILL	09/14/2018	-	-	0.097	lb/ton	scrap management
Electric Arc Furnace	-	Nucor Sedalia, MO	9/12/2018	450,000	tons steel/yr	0.3	lb/ton	Good combustion practice and process control along with a scrap management plan
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	0.3	lb/ton	Employ good combustion practices. Implement a scrap management plan. Employ good combustion practices
Electric Arc Furnace	AL-0319	NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	-	-	0.13	lb/ton	-
Electric Arc Furnace	AL-0319	NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	-	-	39	lb/hr	-
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	0.13	lb/ton	SCRAP MANAGEMENT PROGRAM

Process	RBLC ID	Facility	Permit Date		n Capacity tpy)	Permitted	VOC Limit	Control
		-	(from RBLC)	Value	Unit	Value	Unit	
TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES	AL-0309	NUCOR STEEL DECATUR, LLC	03/02/2016	-	-	57.2	lb/hr	SCRAP MANAGEMENT PROGRAM
Electric Arc Furnace	OK-0173	CMC Durant, OK	01/19/2016	-	-	0.3	lb/ton	Pre-cleaned scrap
				Facili	ties With Permits Issued	Before 2016		
Fume Treatment Plant (EAF)	LA-0309	BENTELER STEEL TUBE FACILITY	6/4/2015	90	tons steel/hr	0.37	lb/ton	scrap management plan and good combustion techniques
Electric Arc Furnace	TX-0705	STEEL MINIMILL FACILITY	07/24/2014	1,300,000	tons steel/yr	0.225	lb/ton	Good Combustion and/or Process Control.
ELECTRIC ARC FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	0.43	lb/ton	GOOD COMBUSTION PRACTICE AND PROCESS CONTROL
LADLE FURNACE	*TX-0651	STEEL MILL	10/02/2013	316	tons steel/hr	0.004	lb/ton	GOOD COMBUSTION PRACTICE AND PROCESS CONTROL
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	0.09	lb/ton	-
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	45.18	lb/hr	-
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	0.13	lb/ton	Direct Evacuation Control (DEC) and VOC Reaction Chamber.
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	16.9	lb/hr	Direct Evacuation Control (DEC) and VOC Reaction Chamber.
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	0.1	lb/ton	Scrap management and Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct.
Electric Arc Furnace	OH-0350	REPUBLIC STEEL	07/18/2012	150	tons steel/hr	60	ton/yr per 12-month rolling period	Scrap management and Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct.

¹ The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

* Indicates that the facilities are draft determination in the RBLC database.

Process	Process RBLC ID Facility (from PBLC)			Production Capacity (US tpy)		GHG Limit	Control	
			(ITOM KBLC)	Value	Unit	Value	Unit	
	1	-		F	Facilities With Permits Is	sued After 2016 ¹		
EAF/LMF	WV-0034	Nucor Steel West Virginia	5/5/2022	3,000,000	tons steel/yr	47,813	lb/hr	Oxyfuel Burners/Suite of Energy Efficiency Requirements
EAFs and LMFs	AR-0173	BIG RIVER STEEL LLC	1/31/2022	250	tons steel/hr	747,098	tons/yr	Good Operating Practices
SN-01 EAF	AR-0172	Nucor Steel Arkansas	9/1/2021	250	tons steel/hr	747,098	tons/yr	Improved process Control, variable speed drives, transformer efficiency, foamy slag practice, oxy fuel burners
Electric Arc Furnaces (EAF)	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	-	-	GOOD COMBUSTION PRACTICES, CLEAN FUEL
Lauié Metallurgical	*TX-0882	SDSW STEEL MILL	01/17/2020	-	-	-	-	GOOD COMBUSTION PRACTICES, CLEAN FUEL
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	73,000	lb/hr	 Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced. (a)furnace design â€" single bucket batch charging; (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss; (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress â€" regulates energy input and post-combustion temperature and composition; (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap; (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduced slag carryover from tapping; (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization.

Process	RBLC ID	Facility	Permit Date (from RBLC)		n Capacity tpy)	Permitted GHG Limit		Control
			(from RBLC)	Value	Unit	Value	Unit	
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	594,220	tons/yr per 12-month rolling average	Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced. (a)furnace design â€" single bucket batch charging; (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss; (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress â€" regulates energy input and post-combustion temperature and composition; (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap; (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduced slag carryover from tapping; (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization.

Process	RBLC ID	Facility	Permit Date		n Capacity tpy)	Permitted	GHG Limit	Control
			(from RBLC)	Value	Unit	Value	Unit	
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	73,000	lb/hr	Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced. (a)furnace design â€" single bucket batch charging; (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss; (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress â€" regulates energy input and post-combustion temperature and composition; (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap; (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduced slag carryover from tapping; (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization.

Process	RBLC ID	Facility	Permit Date		n Capacity tpy)	Permitted	GHG Limit	Control
			(from RBLC)	Value	Unit	Value	Unit	
Electric Arc Furnace #2 (P905)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250	tons steel/hr	594,220	tons/yr per 12-month rolling average	Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced. (a)furnace design â€" single bucket batch charging; (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss; (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress â€" regulates energy input and post-combustion temperature and composition; (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap; (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduced slag carryover from tapping; (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization.
Electric Arc Furnaces	*AL-0327	NUCOR STEEL DECATUR, LLC	08/14/2019	-	-	504000 TONS/YEAR	tons/yr	-
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hr	-	-	-
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	438	lb/ton	Scrap preheating & an energy monitoring and management system
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	02/14/2019	450,000	tons steel/yr	26,280	lb/hr per 12-month rolling average	Scrap preheating & an energy monitoring and management system

Process	RBLC ID	Facility	Permit Date		n Capacity tpy)	Permittee	l GHG Limit	Control
1100000		T deliney	(from RBLC)	Value	Unit	Value	Unit	
Melt Shop (FGMELTSH OP)	MI-0438	GERDAU MACSTEEL MONROE	10/29/2018	-	-	256,694	tons/yr per 12-month rolling average	Energy efficiency management plan
Electric Arc Furnace and Ladle Metallurgy Furnace	TX-0848	STEEL MILL	09/14/2018	-	-	-	-	scrap management, good combustion
Electric Arc Furnace	-	Nucor Sedalia, MO	9/12/2018	450,000	tons steel/yr	438	lb/ton	Various Technologies
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	-	-	Employ good combustion practices. Implement a scrap management plan. Employ good combustion practices
Electric Arc Furnace	AL-0319	NUCOR STEEL TUSCALOOSA, INC.	03/09/2017	-	-	378,621	tons/yr	-
Electric Arc Furnace	OK-0173	CMC Durant, OK	01/19/2016	-	-	535	lb/ton	Pre-heating scrap with exhausts from furnace
				Fa	cilities With Permits Is	sued Before 2016		
Fume Treatment Plant (EAF)	LA-0309	BENTELER STEEL TUBE FACILITY	6/4/2015	90	tons steel/hr	-	-	designs and work practices
FG- MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	320	lb/ton	-
FG- MELTSHOP (Melt Shop)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	130	tons steel/hr	134,396	tons/yr per 12-month rolling average	-
MELT SHOP GHG	AR-0140	BIG RIVER STEEL LLC	9/18/2013	-	-	0	lb/ton	ENERGY EFFICIENCY IMPROVEMENTS
MELTSHOP	IN-0196	NUCOR STEEL	09/17/2013	502	tons steel/hr	544,917	tons/yr	-
Melt Shop (FG- MELTSHOP)	MI-0404	gerdau Macsteel, Inc.	01/04/2013	130	tons liquid steel/hr	0	lb/ton	-
Melt Shop (FG- MELTSHOP)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	130	tons liquid steel/hr	157,365	tons/yr per 12-month rolling average	-
(FG-	MI-0404		01/04/2013	130	tons liquid steel/hr	157,365		-

¹ The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

* Indicates that the facilities are draft determination in the RBLC database.

Process	RBLC ID	Facility	Permit Date		pacity (US tpy)		luoride Limit	Control
Process	KDLC ID	Facility	(from RBLC)	Value	Unit	Value	Unit	Control
		1		Facilities With	Permits Issued A	fter 2016 ¹		
EAF/LMF	WV-0034	Nucor Steel West Virginia	5/5/2022	3,000,000	tons steel/yr	0.57	lb/hr	Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each associated EAF baghouse.
SN-01 EAF	AR-0172	Steel Mill	9/1/2021	250	tons steel/hour	-	-	-
Melt Shop #1 (EU 01) Baghouse #1 & #2 Stack	-	Steel Mini Mill	4/19/2021	2,000,000	tons steel/yr	0.0035	lb/ton	Emissions are controlled by 2 baghouses (combined stack). Noncombustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	-	Steel Mill	7/23/2020	1,750,000	tons steel/yr	-	-	-
Electric Arc Furnaces (EAF)	*TX-0882	SDSW Steel, TX	01/17/2020	-	-	0.01	lb/ton	BAGHOUSE
Ladle Metallurgical Stations (LMS)	*TX-0882	SDSW Steel, TX	01/17/2020	-	-	0.01	GR/DSCF	BAGHOUSE
Electric Arc Furnaces (EAF)	-	SDSW Steel, TX	01/17/2020	-	-	0.01	lb/ton	Baghouse
Electric Arc Furnaces (EAF)	-	Steel Manufacturing Facility	1/2/2020	-	-	-	-	-
Meltshop Operations	-	Gerdau Ameristeel, NC	5/1/2019	90	tons steel/hour	N/A	N/A	-
Meltshop Baghouse & Fugitives	FL-0368	Nucor Frostproof, FL	2/14/2019	450,000	tons steel/yr	0.059	lb/ton	Baghouse
Meltshop Baghouse & Fugitives	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	450,000	tons steel/yr	3.54	lb/hr	Baghouse
Electric Arc Furnaces (EAF)	*NE-0061	Nucor Norfolk, NE	12/30/2018	206	tons scrap/hour	0.0059	lb/ton	-
Electric Arc Furnaces (EAF)	-	Nucor Sedalia, FL	9/12/2018	450,000	tons steel/yr	0.059	lb/ton	Baghouse
Electric Arc Furnace and Ladle Metallurgy Station	-	CMC Mesa, AZ	6/14/2018	435,000	tons steel/yr	0.01	lb/ton	-

Process RBLC ID		Facility	Permit Date	Production Capacity (US tpy)		Permitted Fluoride Limit		Control
Process	KBLC ID	Facility	(from RBLC)	Value	Unit	Value	Unit	Control
Melt Shop Equipment (furnace baghouse)	SC-0183	NUCOR STEEL - BERKELEY	5/4/2018	175	tons steel/hour	0.09	lb/hr 12-HOUR BLOCK AVERAGE/PARTICU LATE	Direct shell evacuation furnace baghouse.
Melt Shop Equipment (furnace baghouse)	SC-0183	NUCOR STEEL - BERKELEY	5/4/2018	175	tons steel/hour	1.57	lb/hr 12-HOUR BLOCK AVERAGE/GASEOU S	Direct shell evacuation furnace baghouse.
Electric Arc Furnaces (EAF)	*NE-0062	Nucor Norfolk, NE	07/07/2017	1,350,000	tons steel/yr	0.059	lb/ton	BAGHOUSE
Electric Arc Furnaces (EAF)	OK-0173	CMC STEEL OKLAHOMA	1/19/2016	-	-	N/A	N/A	-

The OKC Mesa, CMC Oklahoma, Nucor Sedalia, and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.
 Indicates that the facilities are draft determination in the RBLC database.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted CO Limit	Control					
Comparable Facilities ¹											
Meltshop Natural Gas Combustion	-	NUCOR STEEL SEDALIA	9/12/2018	450,000 tpy	0.084 lb/MMBtu	GCP of pipeline quality natural gas					
Ladle Preheaters	-	CMC MESA	6/14/2018	435,000 tpy	0.084 lb/MMBtu	-					
Ladle Dryer	-	CMC MESA	6/14/2018	435,000 tpy	0.084 lb/MMBtu	-					
Tundish Preheater	-	CMC MESA	6/14/2018	435,000 tpy	0.084 lb/MMBtu	-					
Tundish Dryer	-	CMC MESA	6/14/2018	435,000 tpy	0.084 lb/MMBtu	-					
Tundish Mandril Dryer	-	CMC MESA	6/14/2018	435,000 tpy	0.084 lb/MMBtu	-					
Heaters (Gas-Fired)	OK-0173	CMC STEEL OKLAHOMA	1/19/2016	-	0.084 lb/MMBtu	Natural gas fuel					
Ladle and Tundish Preheaters, Dryers and Skull Cutting	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	45.75 MMBtu/hr	0.084 lb/MMBtu	Good combustion practices					
			Not Comparable	Facilities ²							
MALL HEATERS AND DRYERS SN- 05 THROUGH 19	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	0.0824 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE					
DRYERS, MGO COATING LINE	AR-0140	BIG RIVER STEEL LLC	09/18/2013	38 MMBtu/hr	0.0824 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE					
SMALL HEATERS AND DRYERS SN- 05 THROUGH SN-11, SN-16, AND SN-17	AR-0155	BIG RIVER STEEL LLC	11/07/2018	-	0.0824 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE					
PREHEATER, GALVANIZING LINE SN-28	AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2 MMBtu/hr	0.0824 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE					
SMALL HEATERS AND DRYERS SN- 16 through SN-19B	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0824 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE					
SMALL HEATERS AND DRYERS SN- 10 through SN-13	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0824 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE					
PREHEATERS, GALVANIZING LINE SN-28 and SN-29	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0824 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE					
301LER, ANNEALING PICKLE LINE	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0824 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice					
COLD MILL SPACE HEATERS	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0824 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice					
SN-220, 222, 225, 228, 229	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	0.084 lb/MMBtu	Good Combustion Practices					
SN-228 and SN-229 Zinc Dryer and Zinc Pot Preheat	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	3 MMBtu/hr each	0.084 lb/MMBtu	Good Combustion Practices					
SN-141 Vacuum Tank Degasser No. 2	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	0.062 lb/ton steel	Flare					
Charge Hopper Dedusting	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.08 lb/MMBtu	Combustion of Natural Gas and Good Combustion Practices					
VT Degassers	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0824 lb/MMBtu	Combustion of natural gas and good combustion practice					
Lime Injector Burners	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0824 lb/MMBtu	Combustion of natural gas and good combustion practices					
Hydrogen Plant #2 Reformer Furnace	AR-0173	BIG RIVER STEEL LLC	01/31/2022	75 MMBtu/hr	0.0824 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice					

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted CO Limit	Control
Reformer Natural Gas Fired	AR-0173	BIG RIVER STEEL LLC	01/31/2022	1591 MMBtu/hr	543.2 TPY	Scrubber, Low Combustion of Natural Gas, and Good Combustion Practices NOX Burners,
Vertical and Horizontal Ladle Preheaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0824 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Tundish Preheaters/Dryout Stand	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0824 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Natural Gas Space Heaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	170 MMBtu/hr	0.0824 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
Coil Coating Line Dryers and Ovens	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0824 lb/MMBtu	Good combustion practices Energy efficient burners Combustion of natural gas
Coil Coating Line RTO	AR-0173	BIG RIVER STEEL LLC	01/31/2022	12.2 MMBtu/hr	0.0824 lb/MMBtu	Good combustion practices Energy efficient burners Combustion of natural gas
Casting Process Heating Source	AR-0173	BIG RIVER STEEL LLC	01/31/2022	30 MMBtu/hr	0.0824 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
EP 05-03 - Heavy Plate Cutting Beds #1-#4	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	150000 tons steel/yr	84 lb/MMscf	This EP is required to have a Good Work Practices (GWP) Plan.
EP 15-01 - Natural Gas Direct- Fired Space Heaters, Process Water Heaters, & amp; Air Makeup Heaters	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	40 MMBtu/hr, combined	84 lb/MMscf	This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	1.98 lb/ton steel	The facility is equipped with Continuous Emission Monitors (CEMS) to enable real- time monitoring of CO emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.
Galvanizing Line #2 Alkali Cleaning Section Heater (EP 21-07B)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	23 MMBtu/hr	84 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	3 MMBtu/hr	84 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Chemical Treatment & amp; Dryer (EP 21- 11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	876000 tons steel/yr	84 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Vacuum Degasser (incl. pilot emissions) (EP 20-12)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	700000 tons steel/yr	26.89 lb/hr	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and a Good Work Practices (GWP) Plan to minimize emissions. Also controlled by a flare for CO emissions.

Table B-8. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for CO (Prior 10 Years)

Table B-8. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for CO (Prior 10 Years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted CO Limit	Control
Tundish Dryer #2 (P030)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2 MMBtu/hr	11 11 / In/nr	Use of natural gas, good combustion practices and design
Ladle Preheaters and Dryers (P021- 023, P025-026)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16 MMBtu/hr		Use of natural gas, good combustion practices and design
Tundish Preheaters #3 and #4 (P028 and P029)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5 MMBtu/hr	0.19 lb/hr	Use of natural gas, good combustion practices and design
Caster #2 (P907)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 T/hr	500 lb/hr	DEC systems with air gap

¹ The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted NO _x Limit	Control
			Comparable F	Facilities ¹		
Meltshop Natural Gas Combustion	-	NUCOR STEEL SEDALIA	9/12/2018	450,000 tpy	0.1 lb/MMBtu	GCP of pipeline quality natural gas
Ladle Preheaters	-	CMC MESA	6/14/2018	435000 tons/yr	0.098 lb/MMBtu	-
Ladle Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.098 lb/MMBtu	-
Tundish Preheater	-	CMC MESA	6/14/2018	435000 tons/yr	0.098 lb/MMBtu	-
Tundish Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.098 lb/MMBtu	-
Tundish Mandril Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.098 lb/MMBtu	-
Heaters (Gas-Fired)	OK-0173	CMC STEEL OKLAHOMA	1/19/2016		0.1 lb/MMBtu	Natural gas fuel
Ladle and Tundish Preheaters, Dryers and Skull Cutting	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	45.75 MMBtu/hr	0.1 lb/MMBtu	Good combustion practices
			Not Comparable	Facilities ²		
SMALL HEATERS AND DRYERS SN-05 THROUGH 19	AR-0142	BIG RIVER STEEL LLC	09/18/2013	-	0.08 lb/MMBtu	LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES
DRYERS, MGO COATING LINE	AR-0151	BIG RIVER STEEL LLC	09/18/2013	38 MMBtu/hr	0.1 lb/MMBtu	LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES
SMALL HEATERS AND DRYERS SN-05 THROUGH SN-11, SN-16, AND SN-17	AR-0155	BIG RIVER STEEL LLC	11/07/2018	-	0.095 lb/MMBtu	LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES
PREHEATER, GALVANIZING LINE SN-28	AR-0158	BIG RIVER STEEL LLC	11/07/2018	78.2 MMBtu/hr	0.035 lb/MMBtu	SCR, LOW NOX BURNERS, AND COMBUSTION O CLEAN FUEL AND GOOD COMBUSTION PRACTICES
SMALL HEATERS AND DRYERS SN-16 through SN-19B	AR-0161	BIG RIVER STEEL LLC	04/05/2019	-	0.097 lb/MMBtu	Low NOx burners, Combustion of clean fuel, and Good Combustion Practices
SMALL HEATERS AND DRYERS SN-10 through SN-13	AR-0162	BIG RIVER STEEL LLC	04/05/2019	-	0.095 lb/MMBtu	LOW NOX BURNERS, COMBUSTION OF CLEAN FUEL, AND GOOD COMBUSTION PRACTICES
PREHEATERS, GALVANIZING LINE SN-28 and SN-29	AR-0164	BIG RIVER STEEL LLC	04/05/2019	-	0.035 lb/MMBtu	SCR, LOW NOX BURNERS, AND COMBUSTION O CLEAN FUEL AND GOOD COMBUSTION PRACTICES
COLD MILL SPACE HEATERS	AR-0168	BIG RIVER STEEL LLC	04/05/2019	-	0.08 lb/MMBtu	Low NOx burners, Combustion of clean fuel, and Good Combustion Practices
SN-220, 222, 225, 228, 229	AR-0183	NUCOR STEEL ARKANSAS	02/14/2019	-	0.063 lb/MMBtu	Low Nox Burners
SN-228 and SN-229 Zinc Dryer and Zinc Pot Preheat	AR-0184	NUCOR STEEL ARKANSAS	02/14/2019	3 MMBtu/hr each	0.1 lb/MMBtu	Low Nox Burners
Lime Injector Burners	AR-0198	BIG RIVER STEEL LLC	01/31/2022	-	0.095 lb/MMBtu	Low NOX burners Combustion of clean fuel Good Combustion Practices
Vertical and Horizontal Ladle Preheaters	AR-0204	BIG RIVER STEEL LLC	01/31/2022	-	0.095 lb/MMBtu	Low NOx burners Combustion of clean fuel Good Combustion Practices
						Low NOx burners

0.097 lb/MMBtu

Combustion of clean fuel Good Combustion Practices

Table B-9. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for NO_x (Prior 10 Years)

BIG RIVER STEEL LLC

Tundish Preheaters/Dryout Stand AR-0205

01/31/2022

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted NO _x Limit	Control
Natural Gas Space Heaters	AR-0209	BIG RIVER STEEL LLC	01/31/2022	170 MMBtu/hr	0.08 lb/MMBtu	Low NOx burners Combustion of clean fuel Good Combustion Practices
Coil Coating Line Dryers and Ovens	AR-0211	BIG RIVER STEEL LLC	01/31/2022	-	0.1 lb/MMBtu	Good combustion practices Energy efficient burners Combustion of natural gas
Casting Process Heating Source	AR-0213	BIG RIVER STEEL LLC	01/31/2022	30 MMBtu/hr	0.095 lb/MMBtu	Low NOx burners Combustion of clean fuel Good Combustion Practices
EP 15-01 - Natural Gas Direct- Fired Space Heaters, Process Water Heaters, & Air Makeup Heaters	AR-0223	NUCOR STEEL BRANDENBURG	07/23/2020	40 MMBtu/hr, combined	70 lb/MMscf	Low-Nox Burner (Designed to maintain 0.07 lb/MMBtu); and a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	AR-0226	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	0.42 lb/ton	The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of NOx emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.
EP 01-06 - Caster Torch Cutoff	AR-0228	NUCOR STEEL BRANDENBURG	07/23/2020	0.64 MMBtu/hr	100 lb/MMscf	
Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)	AR-0260	NUCOR STEEL GALLATIN, LLC	04/19/2021	3 MMBtu/hr	70 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan. This unit is equipped with a low-NOx burner.
Galvanizing Line #2 Chemical Treatment & Dryer (EP 21- 11)	AR-0261	NUCOR STEEL GALLATIN, LLC	04/19/2021	876000 tons steel/yr	70 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan. Equipped with a low-NOx burner (0.07 lb/MMBtu).
Vacuum Degasser (incl. pilot emissions) (EP 20-12)	AR-0262	NUCOR STEEL GALLATIN, LLC	04/19/2021	700000 tons steel/yr	3.02 lb/hr	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and a Good Work Practices (GWP) Plan to minimize emissions.
Tundish Dryer #2 (P030)	AR-0270	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2 MMBtu/hr	0.12 lb/hr	Use of natural gas, good combustion practices and design
Ladle Preheaters and Dryers (P021-023, P025-026)	AR-0271	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16 MMBtu/hr	1.6 lb/hr	Use of natural gas, good combustion practices and design
Tundish Preheaters #3 and #4 (P028 and P029)	AR-0272	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5 MMBtu/hr	0.95 lb/hr	Use of natural gas, good combustion practices and design
Caster #2 (P907)	AR-0274	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 T/hr	105 lb/hr	DEC systems with air gap

¹ The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-10. Natural Gas Combustion En	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted SO ₂ Limit	Control
			Comparable	Facilities ¹		
Meltshop Natural Gas Combustion	-	NUCOR STEEL SEDALIA	9/12/2018	450,000 tpy	0.0006 lb/MMBtu	GCP of pipeline quality natural gas
Ladle Preheaters	-	CMC MESA	6/14/2018	435000 tons/yr	0.0006 lb/MMBtu	-
Ladle Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.0006 lb/MMBtu	-
Tundish Preheater	-	CMC MESA	6/14/2018	435000 tons/yr	0.0006 lb/MMBtu	-
Tundish Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.0006 lb/MMBtu	-
Tundish Mandril Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.0006 lb/MMBtu	-
Ladle and Tundish Preheaters, Dryers and Skull Cutting	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	45.75 MMBtu/hr	0.0006 lb/MMBtu	Natural gas with a sulfur content less than 2.0 gr/100 scf
		TACILITI	Not Comparat	hle Facilities ²		
SMALL HEATERS AND DRYERS SN-05			Not Comparat	ne racincies		COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION
THROUGH 19	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	5.88 X10^-4 lb/MMBtu	PRACTICE
DRYERS, MGO COATING LINE	AR-0140	BIG RIVER STEEL LLC	09/18/2013	38 MMBtu/hr	5.88 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-16 through SN-19B	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0006 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-10 through SN-13	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	5.88 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
PREHEATERS, GALVANIZING LINE SN-28 and SN-29	AR-0159	BIG RIVER STEEL LLC	04/05/2019			COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
COLD MILL SPACE HEATERS	AR-0159 AR-0159	BIG RIVER STEEL LLC BIG RIVER STEEL LLC	04/05/2019	-	0.0006 lb/MMBtu 0.0006 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
MgO Coating Lines Drying Sections	AR-0159 AR-0168	BIG RIVER STEEL LLC	03/17/2021	- 26.4 MMBtu/hr	0.0006 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
SN-220, 222, 225, 228, 229	AR-0100 AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	20.4 MMDLU/III	0.0006 lb/MMBtu	Good Combustion Practices
SN-228 and SN-229 Zinc Dryer and Zinc	AK-0171	NOCOR STELL ARRANSAS	02/14/2019	-	0.0000 10/14141810	
Pot Preheat	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	3 MMBtu/hr each	0.0006 lb/MMBtu	Good Combustion Practices
Lime Injector Burners	AR-0171 AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0006 lb/MMBtu	Combustion of natural gas and good combustion practices
Eine Injector Burners	AR 0175	DIG RIVER STELE LEC	01/51/2022		0.0000 15/11/1544	Scrubber, Low Combustion of Natural Gas, and Good
Reformer Natural Gas Fired	AR-0173	BIG RIVER STEEL LLC	01/31/2022	1591 MMBtu/hr	32.2 TPY	Combustion Practices NOX Burners,
Tundish Preheaters/Dryout Stand	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0006 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Natural Gas Space Heaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	170 MMBtu/hr	0.0006 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
Coil Coating Line Dryers and Ovens	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0006 lb/MMBtu	Good combustion practices; Energy efficient burners; Combustion of natural gas
Coil Coating Line RTO	AR-0173	BIG RIVER STEEL LLC	01/31/2022	12.2 MMBtu/hr	0.0006 lb/MMBtu	Good combustion practices; Energy efficient burners; Combustion of natural gas
Casting Process Heating Source	AR-0173	BIG RIVER STEEL LLC	01/31/2022	30 MMBtu/hr	0.0006 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
EP 05-03 - Heavy Plate Cutting Beds #1- #4	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	150000 tons steel/yr	0.6 lb/MMscf	This EP is required to have a Good Work Practices (GWP) Plan.
EP 15-01 - Natural Gas Direct-Fired Space Heaters, Process Water Heaters, & Air Makeup Heaters	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	40 MMBtu/hr, combined	0.6 lb/MMscf	This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	0.35 lb/ton	The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of SO2 emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted SO ₂ Limit	Control
EP 01-03 - Vacuum Degasser (under vacuum)	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	0.005 lb/ton	During this process, sulfur is retained in the slag, resulting in minimal SO2 emissions. This EP is required to have a Good Work Practices (GWP) Plan.
EP 01-06 - Caster Torch Cutoff	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	0.64 MMBtu/hr	0.6 lb/MMscf	-
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	0.35 lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and the permittee shall limit the sulfur content of the EAF feedstock utilizing scrap management and/or shall add appropriate fluxes to the charge such that the emission limitations for SO2 are met.
Melt Shop #2 (EU 20 Baghouse #3 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	0.35 lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and the permittee shall limit the sulfur content of the EAF feedstock utilizing scrap management and/or shall add appropriate fluxes to the charge such that the emission limitations for SO2 are met.
Galvanizing Line #2 Alkali Cleaning Section Heater (EP 21-07B)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	23 MMBtu/hr	0.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Preheat Furnace (EP 21-08A)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	94 MMBtu/hr	0.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	3 MMBtu/hr	0.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Chemical Treatment & Dryer (EP 21-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	876000 tons steel/yr	0.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Vacuum Degasser (incl. pilot emissions) (EP 20-12)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	700000 tons steel/yr	1.86 lb/hrr	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and a Good Work Practices (GWP) Plan to minimize emissions.
Tundish Dryer #2 (P030)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2 MMBtu/hr	0.001 lb/hr	Use of natural gas, good combustion practices and design
Ladle Preheaters and Dryers (P021-023, P025-026)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16 MMBtu/hr	0.01 lb/hr	Use of natural gas, good combustion practices and design
Tundish Preheaters #3 and #4 (P028 and P029)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5 MMBtu/hr	0.01 lb/hr	Use of natural gas, good combustion practices and design
Caster #2 (P907)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 ton/hr	87.5 lb/hr	The development, implementation, and maintenance of: (a)a scrap management plan; and (b)a work practice plan addressing argon stirring during LMF desulfurization process.

¹ The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility. ² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for

Table B-11. Natural Gas Combustion Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Particulate Matter Type	Permitted PM Limit	Control			
Comparable Facilities ¹										
Meltshop Natural Gas Combustion	-	NUCOR STEEL SEDALIA	9/12/2018	450,000 tpy	PM10	0.0076 lb/MMBtu	GCP of pipeline quality natural gas			
Meltshop Natural Gas Combustion	-	NUCOR STEEL SEDALIA	9/12/2018	450,000 tpy	PM2.5	0.0076 lb/MMBtu	GCP of pipeline quality natural gas			
Ladle Preheaters	-	CMC MESA	6/14/2018	435000 tons/yr	PM10	0.0075 lb/MMBtu	•			
Ladle Preheaters	-	CMC MESA	6/14/2018	435000 tons/yr	PM2.5	0.0075 lb/MMBtu	-			
Ladle Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	PM10	0.0075 lb/MMBtu	-			
Ladle Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	PM2.5	0.0075 lb/MMBtu	-			
Tundish Preheater	-	CMC MESA	6/14/2018	435000 tons/yr	PM10	0.0075 lb/MMBtu	-			
Tundish Preheater	-	CMC MESA	6/14/2018	435000 tons/yr	PM2.5	0.0075 lb/MMBtu	-			
Tundish Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	PM10	0.0075 lb/MMBtu	-			
Tundish Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	PM2.5	0.0075 lb/MMBtu	-			
Tundish Mandril Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	PM10	0.0075 lb/MMBtu	-			
Tundish Mandril Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	PM2.5	0.0075 lb/MMBtu	-			
Heaters (Gas-Fired)	OK-0173	CMC STEEL OKLAHOMA	1/19/2016	-	Particulate matter, total 10 (TPM10)	0.0076 lb/MMBtu	Natural gas fuel			
Heaters (Gas-Fired)	OK-0173	CMC STEEL OKLAHOMA	1/19/2016	-	Particulate matter, total 2.5 (TPM2.5)	0.0076 lb/MMBtu	Natural gas fuel			
Ladle and Tundish Preheaters, Dryers and Skull Cutting	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	45.75 MMBtu/hr	Particulate matter, total 10 (TPM10)	0.0076 lb/MMBtu	Use of natural gas			
Ladle and Tundish Preheaters, Dryers and Skull Cutting	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	45.75 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	0.0076 lb/MMBtu	Use of natural gas			
				Not Compara	able Facilities ²					
SMALL HEATERS AND DRYERS SN-05 THROUGH 19	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	Particulate matter, total 2.5 (TPM2.5)	5.2 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
SMALL HEATERS AND DRYERS SN-05 THROUGH 19	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	Particulate matter, filterable (FPM)	5.2 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
SMALL HEATERS AND DRYERS SN-05 THROUGH 19	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	Particulate matter, total 10 (TPM10)	5.2 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
DRYERS, MGO COATING LINE	AR-0140	BIG RIVER STEEL LLC	09/18/2013	38 MMBtu/hr	Particulate matter, filterable (FPM)	5.2 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
DRYERS, MGO COATING LINE	AR-0140	BIG RIVER STEEL LLC	09/18/2013	38 MMBtu/hr	Particulate matter, total 10 (TPM10)	5.2 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
DRYERS, MGO COATING LINE	AR-0140	BIG RIVER STEEL LLC	09/18/2013	38 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	5.2 X10^-4 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
SMALL HEATERS AND DRYERS SN-05 THROUGH SN-11, SN-16, AND SN-17	AR-0155	BIG RIVER STEEL LLC	11/07/2018	-	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
SMALL HEATERS AND DRYERS SN-05 THROUGH SN-11, SN-16, AND SN-17	AR-0155	BIG RIVER STEEL LLC	11/07/2018	-	Particulate matter, total 10 (TPM10)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
SMALL HEATERS AND DRYERS SN-05 THROUGH SN-11, SN-16, AND SN-17	AR-0155	BIG RIVER STEEL LLC	11/07/2018	-	Particulate matter, filterable 2.5 (FPM2.5)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
PREHEATER, GALVANIZING LINE SN-28	AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2 MMBtu/hr	Particulate matter, filterable (FPM)	0.0012 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
PREHEATER, GALVANIZING LINE SN-28	AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2 MMBtu/hr	Particulate matter, filterable 10 (FPM10)	0.0012 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			
PREHEATER, GALVANIZING LINE SN-28	AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	0.0012 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE			

Table B-11. Natural Gas Combustion		Sources Recent Permit Lim	Permit Date				
Process	RBLC ID	Facility	(from RBLC)	Production Capacity	Particulate Matter Type	Permitted PM Limit	Control
SMALL HEATERS AND DRYERS SN-16 through SN-19B	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-16 through SN-19B	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, total 10 (TPM10)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-16 through SN-19B	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, total 2.5 (TPM2.5)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-10 through SN-13	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, filterable 2.5 (FPM2.5)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-10 through SN-13	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, filterable 10 (FPM10)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-10 through SN-13	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
PREHEATERS, GALVANIZING LINE SN- 28 and SN-29	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, filterable (FPM)	0.0012 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
PREHEATERS, GALVANIZING LINE SN- 28 and SN-29	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, total 10 (TPM10)	0.0012 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
PREHEATERS, GALVANIZING LINE SN- 28 and SN-29	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, total 2.5 (TPM2.5)	0.0012 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
COLD MILL SPACE HEATERS	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
COLD MILL SPACE HEATERS	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, total 10 (TPM10)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
COLD MILL SPACE HEATERS	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	Particulate matter, total 2.5 (TPM2.5)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
SN-131 and 145 Caster Spray Vents	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	Particulate matter, filterable (FPM)	0.012 gr/dscf	Good work practices
SN-131 and 145 Caster Spray Vents	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	Particulate matter, total 10 (TPM10)	0.004 gr/dscf	Good work practices
SN-131 and 145 Caster Spray Vents	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	Particulate matter, total 2.5 (TPM2.5)	0.0025 gr/dscf	Good work practices
SN-228 and SN-229 Zinc Dryer and Zinc Pot Preheat	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	3 MMBtu/hr each	Particulate matter, filterable (FPM)	0.0019 lb/MMBtu	Good Combustion Practices
SN-228 and SN-229 Zinc Dryer and Zinc Pot Preheat	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	3 MMBtu/hr each	Particulate matter, total 10 (TPM10)	0.0076 lb/MMBtu	Good Combustion Practices
SN-228 and SN-229 Zinc Dryer and Zinc Pot Preheat	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	3 MMBtu/hr each	Particulate matter, total 2.5 (TPM2.5)	0.0076 lb/MMBtu	Good Combustion Practices
Vertical and Horizontal Ladle Preheaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Vertical and Horizontal Ladle Preheaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, total 10 (TPM10)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Vertical and Horizontal Ladle Preheaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, total 2.5 (TPM2.5)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Natural Gas Space Heaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	170 MMBtu/hr	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
Natural Gas Space Heaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	170 MMBtu/hr	Particulate matter, total 10 (TPM10)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
Natural Gas Space Heaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	170 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
Coil Coating Line Dryers and Ovens	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	Good combustion practices; Energy efficient burners; Combustion of natural gas
Coil Coating Line Dryers and Ovens	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, total 10 (TPM10)	0.0075 lb/MMBtu	Good combustion practices; Energy efficient burners; Combustion of natural gas
Coil Coating Line Dryers and Ovens	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, total 2.5 (TPM2.5)	0.0075 lb/MMBtu	Good combustion practices; Energy efficient burners; Combustion of natural gas

Table B-11. Natural Gas Combustion		Sources Recent Permit Lin	Permit Date	rminations for PM (Prior			
Process	RBLC ID	Facility	(from RBLC)	Production Capacity	Particulate Matter Type	Permitted PM Limit	Control
Casters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, filterable (FPM)	0.062 LB/TON OF STEEL	Good operating practices
Casters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, total 10 (TPM10)	0.062 LB/TON OF STEEL	Good operating practices
Casters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	Particulate matter, total 2.5 (TPM2.5)	0.062 lb/MMBtu	Good operating practices
Casting Process Heating Source	AR-0173	BIG RIVER STEEL LLC	01/31/2022	30 MMBtu/hr	Particulate matter, filterable (FPM)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Casting Process Heating Source	AR-0173	BIG RIVER STEEL LLC	01/31/2022	30 MMBtu/hr	Particulate matter, total 10 (TPM10)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Casting Process Heating Source	AR-0173	BIG RIVER STEEL LLC	01/31/2022	30 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	0.0075 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
EP 05-03 - Heavy Plate Cutting Beds #1 #4	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	150000 tons steel/yr	Particulate matter, filterable (FPM)	0.011 LB/IN CUT	This EP is required to have a Good Work Practices (GWP) Plan and baghouses for each cutting bed or a single baghouse that controls emissions from all of the cutting beds, combined, designed to control 99.9% of particulate emissions.
EP 05-03 - Heavy Plate Cutting Beds #1 #4	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	150000 tons steel/yr	Particulate matter, total 10 (TPM10)	0.011 LB/IN CUT	This EP is required to have a Good Work Practices (GWP) Plan and baghouses for each cutting bed or a single baghouse that controls emissions from all of the cutting beds, combined, designed to control 99.9% of particulate emissions.
EP 05-03 - Heavy Plate Cutting Beds #1 #4	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	150000 tons steel/yr	Particulate matter, total 2.5 (TPM2.5)	0.011 LB/IN CUT	This EP is required to have a Good Work Practices (GWP) Plan and baghouses for each cutting bed or a single baghouse that controls emissions from all of the cutting beds, combined, designed to control 99.9% of particulate emissions.
EP 15-01 - Natural Gas Direct-Fired Space Heaters, Process Water Heaters, & Air Makeup Heaters	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	40 MMBtu/hr, combined	Particulate matter, filterable (FPM)	1.9 lb/MMscf	This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.
EP 15-01 - Natural Gas Direct-Fired Space Heaters, Process Water Heaters, & Air Makeup Heaters	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	40 MMBtu/hr, combined	Particulate matter, total 10 (TPM10)	7.6 lb/MMscf	This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.
EP 15-01 - Natural Gas Direct-Fired Space Heaters, Process Water Heaters, & Air Makeup Heaters	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	40 MMBtu/hr, combined	Particulate matter, total 2.5 (TPM2.5)	7.6 lb/MMscf	This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	Particulate matter, filterable (FPM)	0.0018 gr/dscf	Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE). The melt shop has an overall capture efficiency of 99% of emissions generated within the melt shop. Additionally, all EPs have a Good Work Practices (GWP) Plan or a Good Combustion and Operation Practices (GCOP) Plan
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	Particulate matter, total 10 (TPM10)	0.0052 gr/dscf	Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE). The melt shop has an overall capture efficiency of 99% of emissions generated within the melt shop. Additionally, all EPs have either a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	Particulate matter, total 2.5 (TPM2.5)	0.0034 gr/dscf	Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE). The melt shop has an overall capture efficiency of 99% of emissions generated within the melt shop. Additionally, All EPs are required to have either a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.

Table B-11. Natural Gas Combustion	n Emissioi						
Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Particulate Matter Type	Permitted PM Limit	Control
EP 01-05 - Caster Spray Vent	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	Particulate matter, filterable (FPM)	9.38 lb/hrr	This EP is required to have a Good Work Practices (GWP) Plan.
EP 01-05 - Caster Spray Vent	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	Particulate matter, total 10 (TPM10)	1.5 lb/hrr	This EP is required to have a Good Work Practices (GWP) Plan.
EP 01-05 - Caster Spray Vent	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	Particulate matter, total 2.5 (TPM2.5)	0.19 lb/hrr	This EP is required to have a Good Work Practices (GWP) Plan.
EP 01-06 - Caster Torch Cutoff	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	0.64 MMBtu/hr	Particulate matter, total (TPM)	173 lb/MMscf	-
EP 01-06 - Caster Torch Cutoff	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	0.64 MMBtu/hr	Particulate matter, total 10 (TPM10)	178 lb/MMscf	-
EP 01-06 - Caster Torch Cutoff	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	0.64 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	178 lb/MMscf	-
DRI Handling System for Melt Shop #2 (EP 13-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	1322760 tons/yr	Particulate matter, filterable (FPM)	0.001 gr/dscf	Two powered bin vent filters
DRI Handling System for Melt Shop #2 (EP 13-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	1322760 tons/yr	Particulate matter, total 10 (TPM10)	0.001 gr/dscf	Two powered bin vent filters
DRI Handling System for Melt Shop #2 (EP 13-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	1322760 tons/yr	Particulate matter, total 2.5 (TPM2.5)	0.001 gr/dscf	Two powered bin vent filters
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	Particulate matter, filterable (FPM)	31.49 lb/hrr	Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	Particulate matter, total 10 (TPM10)	90.97 lb/hrr	Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	Particulate matter, total 2.5 (TPM2.5)	59.48 lb/hrr	Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop #2 (EU 20 Baghouse #3 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	Particulate matter, filterable (FPM)	26.2 lb/hrr	Emissions are controlled by a baghouse. Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non- combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop #2 (EU 20 Baghouse #3 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	Particulate matter, total 10 (TPM10)	75.67 lb/hrr	Emissions are controlled by a baghouse. Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non- combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop #2 (EU 20 Baghouse #3 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	Particulate matter, total 2.5 (TPM2.5)	49.48 lb/hrr	Emissions are controlled by a baghouse. Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Galvanizing Line #2 Alkali Cleaning Section Heater (EP 21-07B)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	23 MMBtu/hr	Particulate matter, filterable (FPM)	1.9 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Alkali Cleaning Section Heater (EP 21-07B)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	23 MMBtu/hr	Particulate matter, total 10 (TPM10)	7.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Alkali Cleaning Section Heater (EP 21-07B)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	23 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	7.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	3 MMBtu/hr	Particulate matter, filterable (FPM)	1.9 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	3 MMBtu/hr	Particulate matter, total 10 (TPM10)	7.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	3 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	7.6 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Chemical Treatment & Dryer (EP 21-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	876000 tons steel/yr	Particulate matter, filterable (FPM)	1.9 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan

Table B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Particulate Matter Type	Permitted PM Limit	Control
Galvanizing Line #2 Chemical Treatment & amp; Dryer (EP 21-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	876000 tons steel/yr	Particulate matter, total 10 (TPM10)		The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Chemical Treatment & amp; Dryer (EP 21-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	876000 tons steel/yr	Particulate matter, total 2.5 (TPM2.5)		The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan

able B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)								
Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Particulate Matter Type	Permitted PM Limit	Control	
Tundish Dryer #2 (P030)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2 MMBtu/hr	Particulate matter, total (TPM)	0.004 lb/hr	Use of natural gas, good combustion practices and design	
Tundish Dryer #2 (P030)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2 MMBtu/hr	Particulate matter, total 10 (TPM10)	0.004 lb/hr	Use of natural gas, good combustion practices and design	
Tundish Dryer #2 (P030)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	0.004 lb/hr	Use of natural gas, good combustion practices and design	
Baghouse Dust Handling Melt Shop 2 (P031)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	-	Particulate matter, filterable (FPM)	0.03 lb/hr	Bin vent	
Baghouse Dust Handling Melt Shop 2 (P031)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	-	Particulate matter, total 10 (TPM10)	0.01 lb/hr	Bin vent	
Baghouse Dust Handling Melt Shop 2 (P031)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	-	Particulate matter, total 2.5 (TPM2.5)	0.01 lb/hr	Bin vent	
Ladle Preheaters and Dryers (P021-023, P025-026)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16 MMBtu/hr	Particulate matter, total (TPM)	0.05 lb/hr	Use of natural gas, good combustion practices and design	
Ladle Preheaters and Dryers (P021-023, P025-026)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16 MMBtu/hr	Particulate matter, total 10 (TPM10)	0.05 lb/hr	Use of natural gas, good combustion practices and design	
Ladle Preheaters and Dryers (P021-023, P025-026)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	0.05 lb/hr	Use of natural gas, good combustion practices and design	
Tundish Preheaters #3 and #4 (P028 and P029)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5 MMBtu/hr	Particulate matter, total (TPM)	0.03 lb/hr	Use of natural gas, good combustion practices and design	
Tundish Preheaters #3 and #4 (P028 and P029)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5 MMBtu/hr	Particulate matter, total 10 (TPM10)	0.03 lb/hr	Use of natural gas, good combustion practices and design	
Tundish Preheaters #3 and #4 (P028 and P029)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5 MMBtu/hr	Particulate matter, total 2.5 (TPM2.5)	0.03 lb/hr	Use of natural gas, good combustion practices and design	
Caster #2 (P907)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 ton/hr	Particulate matter, filterable (FPM)	19.93 lb/hr	Operation of a baghouse control system a consisting of the following: (a) direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b) roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;	
Caster #2 (P907)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 ton/hr	Particulate matter, total 10 (TPM10)	26.57 lb/hr	Operation of a baghouse control system a consisting of the following: (a) direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b) roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;	
Caster #2 (P907)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 ton/hr	Particulate matter, total 2.5 (TPM2.5)	26.57 lb/hr	Operation of a baghouse control system a consisting of the following: (a) direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b) roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;	

¹ The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-12. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for VO	(Prior 10 Years)	

Table B-12. Natural Gas Combustion Emission	on Sources Rec	ent Permit Limitations)	,		
Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted VOC Limit	Control
		T	Compara	ble Facilities ¹	r	
Meltshop Natural Gas Combustion	-	NUCOR STEEL SEDALIA	9/12/2018	450,000 tpy	0.055 lb/MMBtu	GCP of pipeline quality natural gas
Ladle Preheaters	-	CMC MESA	6/14/2018	435000 tons/yr	0.0053 lb/MMBtu	-
Ladle Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.0053 lb/MMBtu	-
Tundish Preheater	-	CMC MESA	6/14/2018	435000 tons/yr	0.0053 lb/MMBtu	-
Tundish Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.0053 lb/MMBtu	-
Tundish Mandril Dryer	-	CMC MESA	6/14/2018	435000 tons/yr	0.0053 lb/MMBtu	-
Heaters (Gas-Fired)	OK-0173	CMC STEEL OKLAHOMA	1/19/2016	-	0.0055 lb/MMBtu	Natural gas fuel
Ladle and Tundish Preheaters, Dryers and Skull Cutting	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	45.75 MMBtu/hr	0.0055 lb/MMBtu	Good combustion practices and using pipeline quality natural gas
			Not Compa	rable Facilities ²		
SMALL HEATERS AND DRYERS SN-05 THROUGH 19	AR-0140	BIG RIVER STEEL LLC	09/18/2013	-	0.0054 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
DRYERS, MGO COATING LINE	AR-0140	BIG RIVER STEEL LLC	09/18/2013	38 MMBtu/hr	0.0054 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-05 THROUGH SN-11, SN-16, AND SN-17	AR-0155	BIG RIVER STEEL LLC	11/07/2018	-	0.0054 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
PREHEATER, GALVANIZING LINE SN-28	AR-0155	BIG RIVER STEEL LLC	11/07/2018	78.2 MMBtu/hr	0.0054 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-16 through SN 19B	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0054 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
SMALL HEATERS AND DRYERS SN-10 through SN- 13	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0054 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
PREHEATERS, GALVANIZING LINE SN-28 and SN- 29	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0054 lb/MMBtu	COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE
COLD MILL SPACE HEATERS	AR-0159	BIG RIVER STEEL LLC	04/05/2019	-	0.0054 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
SN-131 and 145 Caster Spray Vents	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	4.4 lb/hr	Good work practices
SN-137 Hot Mill Monovent	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	5.8 lb/hr	Good work practices
SN-138 Cold Mill No. 1 Monovent	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	-	7.5 lb/hr	Good work practices
SN-228 and SN-229 Zinc Dryer and Zinc Pot Preheat	AR-0171	NUCOR STEEL ARKANSAS	02/14/2019	3 MMBtu/hr each	0.0076 lb/MMBtu	Good Combustion Practices
Lime Injector Burners	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0054 lb/MMBtu	Combustion of natural gas and good combustion practices
Vertical and Horizontal Ladle Preheaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	-	0.0054 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
Natural Gas Space Heaters	AR-0173	BIG RIVER STEEL LLC	01/31/2022	170 MMBtu/hr	0.0054 lb/MMBtu	Combustion of Natural gas and Good Combustion Practice
Casting Process Heating Source	AR-0173	BIG RIVER STEEL LLC	01/31/2022	30 MMBtu/hr	0.0054 lb/MMBtu	Combustion of Natural gas and Good Combustion Practices
EP 05-03 - Heavy Plate Cutting Beds #1-#4	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	150000 tons steel/yr	5.5 lb/MMscf	This EP is required to have a Good Work Practices (GWP) Plan.
EP 15-01 - Natural Gas Direct-Fired Space Heaters, Process Water Heaters, & Air Makeup Heaters	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	40 MMBtu/hr, combined		This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.
Melt Shop (EU 01) & amp; Melt Shop Combustion Sources (EU 02)	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	0.09 lb/ton	All EPs are required to have either a Good Work Practices (GWP) Plan or a Good Combustion & Operating Practices (GCOP) Plan.

Table B-12. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for VOC (Prior 10 Years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted VOC Limit	Control
EP 01-05 - Caster Spray Vent	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	1750000 tons steel produced/yr	0.4 lb/hr	This EP is required to have a Good Work Practices (GWP) Plan.
EP 01-06 - Caster Torch Cutoff	KY-0110	NUCOR STEEL BRANDENBURG	07/23/2020	0.64 MMBtu/hr	5.5 lb/MMscf	-
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	0.09 lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Melt Shop #2 (EU 20 Baghouse #3 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel/yr	0.09 lb/ton	Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.
Galvanizing Line #2 Alkali Cleaning Section Heater (EP 21-07B)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	23 MMBtu/hr	5.5 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Zinc Pot Preheater (EP 21- 09)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	3 MMBtu/hr	5.5 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
Galvanizing Line #2 Chemical Treatment & Dryer (EP 21-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	876000 tons steel/yr	5.5 lb/MMscf	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan
A-Line Caster Spray Vent (EP 01-14)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel cast/yr	0.4 lb/hr	The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions.
B-Line Caster Spray Vent (EP 20-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	04/19/2021	2000000 tons steel cast/yr	0.8 lb/hr	The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions.
Tundish Dryer #2 (P030)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	1.2 MMBtu/hr	0.01 LB/H	Use of natural gas, good combustion practices and design
Ladle Preheaters and Dryers (P021-023, P025- 026)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	16 MMBtu/hr	0.09 LB/H	Use of natural gas, good combustion practices and design
Tundish Preheaters #3 and #4 (P028 and P029)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	9.5 MMBtu/hr	0.05 LB/H	Use of natural gas, good combustion practices and design
Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 T/H	87.5 LB/H	The development, implementation, and maintenance of a scrap management plan.
Caster #2 (P907)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	250 T/H	87.5 LB/H	The development, implementation, and maintenance of a scrap management plan.

¹ The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

² These RLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-13. Natural Gas Combustion Emission	able B-13. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for GHGs (Prior 10 Years)									
Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted CO2e Limit	Control				
			Compara	ble Facilities ¹						
Meltshop Natural Gas Combustion	-	NUCOR STEEL SEDALIA	9/12/2018	450,000 tpy		GCP of pipeline quality natural gas				
Heaters (Gas-Fired)	OK-0173	CMC STEEL OKLAHOMA	1/19/2016	-	120 lb/MMBtu	Natural gas fuel				
Ladle and Tundish Preheaters, Dryers and Skull Cutting	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	45.75 MMBtu/hr	120 lb/MMBtu	Good combustion practices and using pipeline quality natural gas				
			Not Compa	rable Facilities ²						
MELT SHOP GHG	AR-0140	BIG RIVER STEEL LLC	9/18/2013	-	0.155 LB/TON OF STEEL	ENERGY EFFICIENCY IMPROVEMENTS				
SMALL HEATERS AND DRYERS SN-10 through SN- 13	AR-0159	BIG RIVER STEEL LLC	4/5/2019	-	117 lb/MMBtu	GOOD OPERATING PRACTICES				
SN-228 and SN-229 Zinc Dryer and Zinc Pot Preheat	AR-0171	NUCOR STEEL ARKANSAS	2/14/2019	3 MMBtu/hr each	121 lb/MMBtu 3-HR	Good Combustion Practices				
Lime Injector Burners	AR-0173	BIG RIVER STEEL LLC	1/31/2022	-	-	Good operating practices				
Vertical and Horizontal Ladle Preheaters	AR-0173	BIG RIVER STEEL LLC	1/31/2022	-	117 lb/MMBtu	Good operating practices				
Tundish Preheaters/Dryout Stand	AR-0173	BIG RIVER STEEL LLC	1/31/2022	-	117 lb/MMBtu	Good operating practices				
Natural Gas Space Heaters	AR-0173	BIG RIVER STEEL LLC	1/31/2022	170 MMBtu/hr	117 lb/MMBtu	Good Operating Practices				
Casting Process Heating Source	AR-0173	BIG RIVER STEEL LLC	1/31/2022	30 MMBtu/hr		Good Operating Practices				
EP 15-01 - Natural Gas Direct-Fired Space Heaters, Process Water Heaters, & Air Makeup Heaters	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	40 MMBtu/hr, combined	COMBINED	This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan and meet design requirements.				
Melt Shop (EU 01) & amp; Melt Shop Combustion Sources (EU 02)	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1750000 tons steel produced/yr	463444 TON/TR 12- MONTH POLLING	All EPs must have wither a Good Work Practices (GWP) Plan or a Goff Combustion and Operating Practices (GCOP) Plan. Additionally, There are Design Requirements for GHGs the source must meet.				
EP 01-06 - Caster Torch Cutoff	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	0.64 MMBtu/hr	332 TON/YR 12-MONTH ROLLING	-				
Melt Shop #1 (EU 01 Baghouse #1 & #2 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	2000000 tons steel/yr		Good Combustion and Operating Practices (GCOP) Plan and specific design and operational requirements				
Melt Shop #2 (EU 20 Baghouse #3 Stack)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	2000000 tons steel/yr	MONTH ROLLING	Good Combustion and Operating Practices (GCOP) Plan and specific design and operational requirements				
Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	3 MMBtu/hr	30 TONS/YR 12-MONTH	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and implement various design and operational efficiency requirements.				
Galvanizing Line #2 Chemical Treatment & Dryer (EP 21-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	876000 tons steel/yr	1555 TONS/YR 12- MONTH ROLLING	The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and implement various design and operational efficiency requirements.				
Tundish Dryer #2 (P030)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	9/27/2019	1.2 MMBtu/hr	140.22 LB/H	Use of natural gas and energy efficient design				
Ladle Preheaters and Dryers (P021-023, P025- 026)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	9/27/2019	16 MMBtu/hr	1869.65 LB/H	Use of natural gas and energy efficient design				
Tundish Preheaters #3 and #4 (P028 and P029)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	9/27/2019	9.5 MMBtu/hr	1110.1 LB/H	Use of natural gas and energy efficient design				

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity	Permitted CO2e Limit	Control
Caster #2 (P907)	OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	9/27/2019	250 T/H	73000 LB/H COMBINED P905 AND P906. SEE NOTES.	Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced. (a) furnace design - single bucket batch charging; (b) oxy-fuel burners - supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice - increased electrical efficiency and reduced radiant heat loss; (d) real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress - regulates energy input and post-combustion temperature and composition; (e) ultra-high-power transformer - lower power-on times due to faster melting of scrap; (f) eccentric bottom tapping - lower treatment requirements in LMF due to reduced slag carryover from tapping; (g) heel practice - higher retention of liquid heel heats scrap faster resulting in quick arc stabilization.

¹ The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility. ² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-14. Rolling Mill/Coo	ng Beds Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Table B-14.	Table B-14. Rolling Mill/Cooling Beds Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)									
Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control			
Comparable Facilities										
Rolling Operations	FL-0368	NUCOR STEEL FLORIDA FACILITY	02/14/2019		PM Total	0	Good industry practices			
Rolling Mill and Cutting Torches	IL-0126	NUCOR STEEL KANKAKEE, INC.	11/1/2018	500,000	PM Filterable	6.65 tpy 0.027 lb/hr	Good industry practices for a rolling mill			
Rolling Mill and Cutting Torches	IL-0126	NUCOR STEEL KANKAKEE, INC.	11/1/2018	500,000	PM ₁₀ Total	6.65 tpy 0.027 lb/hr	Good industry practices for a rolling mill			
Rolling Mill and Cutting Torches	IL-0126	NUCOR STEEL KANKAKEE, INC.	11/1/2018	500,000	PM _{2.5} Total	2.46 tpy 0.010 lb/hr	Good industry practices for a rolling mill			
Rolling Mill (P009)	OH-0369	NUCOR STEEL MARION, INC.	8/29/2017	154.5 MMBtu/hr	PM Total	3.59 tpy				
Rolling Mill (P009)	OH-0369	NUCOR STEEL MARION, INC.	8/29/2017	154.5 MMBtu/hr	PM ₁₀ Total	3.59 tpy				
Rolling Mill (P009)	OH-0369	NUCOR STEEL MARION, INC.	8/29/2017	154.5 MMBtu/hr	PM _{2.5} Total	3.59 tpy				
				I	Not Comparable Facilities					
KY-0115	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	3500000	FPM	0.04 LB/HR	The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions. Equipped with a dust collector.			
KY-0115	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	3500000	TPM10	0.04 LB/HR	The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions. Equipped with a dust collector.			
KY-0115	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	3500000	TPM2.5	0.04 LB/HR	The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions. Equipped with a dust collector.			
KY-0110	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1110000.00	FPM	0.011 LB/HR	This EP is required to have a Good Work Practices (GWP) Plan and a baghouse designed to control 99.9% of particulate emissions.			
KY-0110	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1110000.00	TPM10	0.011 LB/HR	This EP is required to have a Good Work Practices (GWP) Plan and a baghouse designed to control 99.9% of particulate emissions.			
KY-0110	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1110000.00	TPM2.5	0.011 LB/HR	This EP is required to have a Good Work Practices (GWP) Plan and a baghouse designed to control 99.9% of particulate emissions.			

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Permitted VOC Limit	Control		
				Comparable Facilities				
Rolling Mill (P009)	OH-0369	NUCOR STEEL MARION, INC	8/29/2017	154.4 MMBTU/H	9.26 TPY	-		
Rolling Operations	FL-0368	NUCOR STEEL FLORIDA FACILITY	2/14/2019	0	0	Limiting the oil and grease usage; Good Operating Practices		
	Not Comparable Facilities ¹							
Hot Rolling Mill	AL-0307	Alloys Plant	10/9/2015	0	106 PPMVD	Fume Exhaust Control		

Table B-15. Rolling Mill/Cooling Beds Recent Permit Limitations and Determinations of BACT for VOC (Prior 10 years)

¹ These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

* Indicates that the facilities are draft determination in the RBLC database.

Table B-16 . Storage Silos Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
	1			Com	parable Facilities ¹		
Two Carbon/Lime Silos	-	Gerdau Ameristeel, NC	5/1/2019	90 tph	PM10 Filterable	-	Fabric Filters
Loading of flux from storage silo to EAF	-	CMC Steel Arizona	6/14/2018	450000 tons of steel per year	РМ	-	Fugitive dust control plan Partial enclosure in scrap bay building
Silos	FL-0368	NUCOR STEEL FLORIDA FACILITY	02/14/2019	0	Particulate matter, filterable (FPM)	0.005 GR/DSCF	Bin vent filters
Materials Storage Silos	OK-0173	CMC STEEL OKLAHOMA	01/19/2016	0	Particulate matter, total (TPM10)	0.01 GR/DSCF	Baghouses.
Materials Storage Silos	OK-0173	CMC STEEL OKLAHOMA	01/19/2016	0	Particulate matter, total (TPM2.5)	0.01 GR/DSCF	Baghouses.
Materials Storage Silos	-	Nucor Sedalia	9/12/2018	450000 tpy	PM/PM ₁₀ /PM _{2.5}	0.01 gr/dscf	Baghouse
STORAGE SILOS	TX-0882	STEEL DYNAMICS SOUTHWEST, LLC SDSW STEEL MILL	1/17/2020	0	FPM, TPM10, TPM2.5	0.01 GR/DSCF	BAGHOUSE
				Not Co	omparable Facilities ²		
LMF Silo #2 & Lime/Carbon Silo: P032,P033,P034	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	0	Particulate matter, filterable (FPM)	0.02 GR/DSCF	Fabric filter
LMF Silo #2 & Lime/Carbon Silo: P032,P033,P034	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	0	Particulate matter, filterable (FPM10)	0.02 GR/DSCF	Fabric filter
LMF Silo #2 & Lime/Carbon Silo: P032,P033,P034	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	0	Particulate matter, filterable (FPM2.5)	0.02 GR/DSCF	Fabric filter
Limestone Receiving #2 (F007)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	262800 T/YR	Particulate matter, fugitive	1.16 T/YR	Minimization of drop height
Limestone Receiving #2 (F007)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	262800 T/YR	Particulate matter, filterable (FPM10)	1.16 T/YR	Minimization of drop height
Limestone Receiving #2 (F007)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	262800 T/YR	Particulate matter, filterable (FPM2.5)	1.16 T/YR	Minimization of drop height
STORAGE SILOS	*TX-0882	SDSW STEEL MILL	01/17/2020	0	Particulate matter, total (TPM)	0.01 GR/DSCF	BAGHOUSE
STORAGE SILOS	*TX-0882	SDSW STEEL MILL	01/17/2020	0	Particulate matter, total (TPM10)	0.01 GR/DSCF	BAGHOUSE
STORAGE SILOS EP 07-02 - DRI Storage Silo #1	*TX-0882 KY-0110	SDSW STEEL MILL NUCOR STEEL BRANDENBURG	01/17/2020 7/23/2020	0 1750000 TPY	Particulate matter, total (TPM2.5) FPM, TPM10, TPM2.5	0.01 GR/DSCF 0.001 GR/DSCF	BAGHOUSE For DRI Storage Silo #1 (EP 07-02): The permittee shall install, operate, and maintain a dust collector for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 1200 dscf/min and a passive bin vent for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 148 dscf/min.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
EP 07-03 - DRI Storage Silo #2	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1750000 TPY	FPM, TPM10, TPM2.5	0.001 GR/DSCF	For EP 07-03 - DRI Storage Silo #2: The permittee shall install, operate, and maintain a dust collector for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 1200 dscf/min and a passive bin vent for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 148 dscf/min.
EP 07-04 - DRI Storage Silo Loadout	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1750000 TPY	FPM, TPM10, TPM2.5	0.001 GR/DSCF	For EP 07-04 - DRI Storage Silo Loadout: The permittee shall install, operate, and maintain a dust collector for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 1200 dscf/min and a passive bin vent for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 148 dscf/min.
LIME / CARBON STORAGE SILOS	IN-0235	STEEL DYNAMICS INC FLAT ROLL DIVISION	11/05/2015	-	Particulate matter, filterable (FPM)	0.01 GR/DSCF	BIN VENT
Carbon/Lime Storage and charging	LA-0309	BENTELER STEEL TUBE FACILITY	06/04/2015	0	Particulate matter, total (TPM10)	0.005 GR/DSCF	filter / dust collector
Carbon/Lime Storage and charging	LA-0309	BENTELER STEEL TUBE FACILITY	06/04/2015	0	Particulate matter, total (TPM2.5)	0.005 GR/DSCF	Filter / Dust Collector
Material Handling	LA-0309	BENTELER STEEL TUBE FACILITY	06/04/2015	0	Particulate matter, total (TPM10)	0.005 GR/DSCF	baghouses
Material Handling	LA-0309	BENTELER STEEL TUBE FACILITY	06/04/2015	0	Particulate matter, total (TPM2.5)	0.005 GR/DSCF	baghouses
Flux and Carbon storage material handling	OH-0350	REPUBLIC STEEL	07/18/2012	0	Particulate matter, total (TPM10)	2.4 LB/H	Enclosures and baghouse
Flux and Carbon storage material handling	OH-0350	REPUBLIC STEEL	07/18/2012	0	Particulate matter, total (TPM2.5)	0.37 LB/H	Enclosures and Baghouse
Raw Material Handling and Processing (carbon dump fugitives)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM)	0	Good Work Practice Standards and Proper Operation and Maintenance.
Raw Material Handling and Processing (lime dump fugitives)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM)	0	Good Work Practice Standards and Proper Operation and Maintenance
THREE STORAGE BIN/SILOS ID#12A, 12B, AND 12C	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/31/2012	0	Particulate matter, filterable (FPM)	0.01 GR/DSCF 3% Opacity for 6-minute average	BIN VENT FILTER

Table B-16 . Storage Silos Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
THREE STORAGE BIN/SILOS ID#12A, 12B, AND 12C		STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION		0	Particulate matter, filterable (FPM10)	0.01 GR/DSCF 3% Opacity for 6-minute average	BIN VENT FILTER

¹ The CMC Mesa, Nucor Sedalia, and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

* Indicates that the facilities are draft determination in the RBLC database.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	FBACT for PM (Prior 10 years) Particulate Matter Type	Permitted PM Limit	Control
	Building or	Structure Housing Any	Iron or Steel Fo	20% opacity from fugitive emissions (6-minute average)			
		New Large Iron and St	eel Foundaries	20% opacity from fugitive emissions (6 min average)			
	Fugitive Du	ıst from Dust-Generatir	ng Operations, I	20% opacity from fugitive emissions			
	Open Storage P	Piles and Material Handl	ling, Maricopa C		One of the following: spray material with water; maintain a 1.5% or more soil moisture content of the open storage piles; locate open storage pile(s) in a pit/in the bottom of a pit; arrange open storage pile(s) such that storage pile(s) of larger diameter products are on the perimeter and act as barriers to/for open storage pile(s) that could create fugitive dust emissions; construct and maintain wind barriers, storage silos, or a three- sided enclosure with walls, whose length is no less than equal to the length of the pile, whose distance from the pile is no more than twice the height of the pile, whose height is equal to the pile height, and whose porsity is no more than 50%; cover open storage piles with tarps, plastic, or other material to prevent wind from removing the coverings; maintain a visible crust.		
ſ	Open Storage P	iles and Material Handl	ling, Maricopa C		When installing new open storage pile(s): Install the open storage pile(s) 25 feet or more from the property line; and limit the height of the open storage pile(s) to less than 45 feet. An owner, operator, or person subject to this rule may be allower to install the open storage pile(s) less than 25 feet from the property line, if the owner, operator, or person subject to this rule can demonstrate to the Control Officer that there is not adequate space to install the open storage pile(s).		

Table B-17. Storage Piles & Material Transfers Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	ty Particulate Matter Type Permitted PM Lim		Control
Oţ	pen Storage I	Piles and Material Handli	ing, Maricopa C		For open storage pile(s) more than eight feet high and not covered, completely wet surface of the open storage pile(s).		
	-				Comparable Facilities ¹		
Raw and Waste Material Storage and Handling & Slag Yard	FL-0368	NUCOR STEEL FLORIDA FACILITY	02/14/2019		PM Filterable	0	Use of equipment enclosures, water sprays, and minimizing wind erosion and drop points
Storage Piles : Refractory and Slag	ОК-0173	CMC STEEL OKLAHOMA	01/19/2016		PM Total	0	Minimizing drop height. In addition, use of windbreaks and watering of piles may be used, although watering may result in unacceptable solidification of slag or other materials discharged from high-temperature operations. Most of the outdoor piles materials are scrap steel which has very little brittle materials susceptible to becoming fugitive dust.
ES-3 Particulate Emissions		GERDAU AMERISTEEL, NC	5/1/2019		РМ	0	None
Storage Piles		CMC STEEL MESA	6/14/2018		TSP/PM ₁₀	0	Enclosures, wetting/watering and material moisture content
Slag/Mill Scale Control Device		NUCOR STEEL MISSOURI FACILITY	9/12/2018	-	PM/PM ₁₀ /PM _{2.5}	0	Water spray or dust suppressant emission control system in slag yard when screens or crusher are operating. Minimize drop heights.
				N	ot Comparable Facilities ²		
Slag Storage Piles	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	FPM	0.58 TPY	Dust Control Plan
Slag Storage Piles	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	TPM10	0.29 TPY	Dust Control Plan
Slag Storage Piles	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	TPM2.5	0.1 TPY	Dust Control Plan

Table B-17. Storage Piles & Material Transfers Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

¹ The CMC Mesa, Nucor Missouri and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

² The RBLC listings are either not condiered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison. * Indicates that the facilities are draft determination in the RBLC database.

Table B-18. Cooling Tower Rece	nt Permit L	imitations and Determinations				1	ſ
Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
				Comparable Facilitie	es ¹		
Contact and Non-Contact Cooling Towers	-	CMC STEEL MESA	6/14/2018	-	PM, PM ₁₀ , PM _{2.5}	0.0005 % DRIFT RATE	Drift eliminators
Two Cooling Towers	FL-0368	NUCOR STEEL FLORIDA FACILITY	02/14/2019	19,650 gal/min	Particulate matter, total (TPM)	0.001 % DRIFT RATE	Drift eliminators
Cooling Towers	OK-0173	CMC STEEL OKLAHOMA	01/19/2016	0	Particulate matter, total (TPM10)	0.001 % DRIFT	Drift eliminators.
Cooling Towers	-	Nucor Sedalia	9/12/2018	450000 tpy	PM/PM ₁₀ /PM _{2.5}	0.001% DRIFT 2,500 ppm TDS limit	Drift Eliminators/TDS limit for circulated water
Cooling Towers	IL-0126	NUCOR STEEL KANKAKEE, INC.	▲ 11/01/2018	lot Comparable Facili 4500 gallons/minute	Particulate matter, total (TPM)	0.001 WEIGHT PERCENT 4000 TOTAL DISOLVED SOLID	Drift eliminators
Contact Cooling Towers - Melt Shop 2 (P027)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	2.7 MMGAL/H	Particulate matter, filterable (FPM)	1.17 T/YR	i.use of drift eliminator(s) designed to achieve a 0.001% drift rate; ii.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12- month average as indicated in the table below: Cooling Tower - TDS (ppm) Meltshop 2 Cooling Tower - 1000 Caster Mold Water Cooling Tower - 800 Caster Mold Water Cooling Tower - 800 Caster Non-Contact 2 Cooling Tower - 800 Caster Contact 2 Cooling Tower - 1400
Contact Cooling Towers - Melt Shop 2 (P027)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	2.7 MMGAL/H	Particulate matter, filterable (FPM10)	0.93 T/YR	i.use of drift eliminator(s) designed to achieve a 0.001% drift rate; ii.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12- month average as indicated in the table below: Cooling Tower - TDS (ppm) Metishop 2 Cooling Tower - 1000 Caster Mold Water Cooling Tower - 800 Caster Non-Contact 2 Cooling Tower - 800 Caster Contact 2 Cooling Tower - 1400
Contact Cooling Towers (P014)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	6.41 MMGAL/H	Particulate matter, filterable (FPM)	8.7 T/YR	i.use of drift eliminator(s) designed to achieve a 0.003% drift rate; ii.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12- month average as indicated in the table below: Cooling Tower - TDS (ppm) Metshop Cooling Tower (501) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Contact Cooling Tower (505) - 100 Mill Contact Cooling Tower (505) - 2000 Laminar Flow Cooling Tower (506) - 1400
Contact Cooling Towers (P014)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	6.41 MMGAL/H	Particulate matter, filterable (FPM10)	6.95 T/YR	i.use of drift eliminator(s) designed to achieve a 0.003% drift rate; ii.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12- month average as indicated in the table below: Cooling Tower - TDS (ppm) Metishop Cooling Tower (501) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Contact Cooling Tower (505) - 1100 Mill Contact Cooling Tower (505) - 2000 Laminar Flow Cooling Tower (506) - 1400
Contact Cooling Towers (P014)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	6.41 MMGAL/H	Particulate matter, filterable (FPM2.5)	0.02 T/YR	i.use of drift eliminator(s) designed to achieve a 0.003% drift rate; ii.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12- month average as indicated in the table below: Cooling Tower - TDS (ppm) Metishop Cooling Tower (501) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Contact Cooling Tower (505) - 1100 Mill Contact Cooling Tower (505) - 2000 Laminar Flow Cooling Tower (506) - 1400
COOLING TOWER: ROLLING MILL/CASTER (NON-CONTACT) ID#15E	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	18000 GAL/MIN	Particulate matter, filterable (FPM)	0.003 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: ROLLING MILL/CASTER (NON-CONTACT) ID#15E	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	18000 GAL/MIN	Particulate matter, filterable (FPM10)	0.003 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: CASTER SPRAYS (CONTACT) ID#15F	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	3500 GAL/MIN	Particulate matter, filterable (FPM)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
COOLING TOWER: CASTER SPRAYS (CONTACT) ID#15F	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	3500 GAL/MIN	Particulate matter, filterable (FPM10)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: ROLLING MILL (CONTACT) ID#15A	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	8000 GAL/MIN	Particulate matter, filterable (FPM)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: ROLLING MILL (CONTACT) ID#15A	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	8000 GAL/MIN	Particulate matter, filterable (FPM10)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: LVD BOILER (CONTACT) ID#15G	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	2500 GAL/MIN	Particulate matter, filterable (FPM)	0.005 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: LVD BOILER (CONTACT) ID#15G	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	2500 GAL/MIN	Particulate matter, filterable (FPM10)	0.005 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: ROLLING MILL (CONTACT) ID#15B	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	4000 GAL/MIN	Particulate matter, filterable (FPM)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS
COOLING TOWER: ROLLING MILL (CONTACT) ID#15B	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	4000 GAL/MIN	Particulate matter, filterable (FPM10)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: ROLLING MILL ID#15C (NONCONTACT)	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	81250 GAL/MIN	Particulate matter, filterable (FPM)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: ROLLING MILL ID#15C (NONCONTACT)	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	81250 GAL/MIN	Particulate matter, filterable (FPM10)	0.001 % DRIFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: #1 CAST ID#15D (CONTACT)	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	5000 GAL/MIN	Particulate matter, filterable (FPM)	0.001 % DRAFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
COOLING TOWER: #1 CAST ID#15D (CONTACT)	IN-0156	STEEL DYNAMICS, INC STRUCTURAL AND RAIL DIVISION	12/21/2012	5000 GAL/MIN	Particulate matter, filterable (FPM10)	0.001 % DRAFT RATE	DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT CHEMICALS IN ANY OF THE COOLING TOWERS.
Cooling Towers	LA-0309	BENTELER STEEL TUBE FACILITY	06/04/2015	0	Particulate matter, total (TPM10)	0.0005 % DRIFT RATE	drift eliminators
Cooling Towers	LA-0309	BENTELER STEEL TUBE FACILITY	06/04/2015	0	Particulate matter, total (TPM2.5)	0.0005 % DRIFT RATE	drift eliminators
Caster Cooling Tower (EUCASTERCOOLTWR)	MI-0404	GERDAU MACSTEEL, INC.	01/04/2013	1630 GAL/MIN	Particulate matter, total (TPM10)	0.0005 % DRIFT LOSS	Drift eliminator
EUCASTERCOOLTWR (Caster cooling tower)	MI-0417	GERDAU MACSTEEL, INC.	10/27/2014	1630 GAL/MIN	Particulate matter, total (TPM2.5)	0.0005 % DRIFT LOSS	Drift eliminator
Cooling Towers	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM)	0.66 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM10)	0.33 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM2.5)	0.0013 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers (non-contact cooling tower)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM)	0.12 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers (non-contact cooling tower)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM10)	0.05 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers (non-contact cooling tower)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM2.5)	0.0003 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers (contact cooling tower)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM)	0.13 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers (contact cooling tower)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM10)	0.06 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers (contact cooling tower)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	0	Particulate matter, filterable (FPM2.5)	0.0003 LB/HR	Proper Equipment Design, Operation and Maintenance
Cooling Towers	WV-0034	Nucor Steel West Virginia	5/5/2022	90000 gpm	Particulate matter, total (TPM)	0.0005% Drift Loss	Drift Eliminator
Cooling Towers	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	FPM, TPM10, TPM2.5	0.0005% Drift Loss	-
SN-212 Cooling Tower	AR-0172	NUCOR STEEL ARKANSAS	9/1/2021	0	FPM, TPM10, TPM2.5	0.0005% Drift Loss	-
EP 09-01 - Melt Shop ICW Cooling Tower	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	52000 gal/min	FPM, TPM10, TPM2.5	0.36 LB/HR	High Efficiency Mist Eliminator. The mist eliminator drift loss shall be maintained at 0.001% or less to total gpm.
EP 09-02 - Melt Shop DCW Cooling Tower	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	5900 gal/min	FPM, TPM10, TPM2.5	0.04 LB/HR	High Efficiency Mist Eliminator. The mist eliminator drift loss shall be maintained at 0.001% or less to total gpm.
EP 09-03 - Rolling Mill ICW Cooling Tower	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	8500 gal/min	FPM, TPM10, TPM2.5	0.06 LB/HR	High Efficiency Mist Eliminator. The mist eliminator drift loss shall be maintained at 0.001% or less to total gpm.
EP 09-04 - Rolling Mill DCW Cooling Tower EP 09-05 - Rolling Mill Quench/ACC	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	22750 gal/min	FPM, TPM10, TPM2.5 FPM, TPM10,	0.17 LB/HR	High Efficiency Mist Eliminator. The mist eliminator drift loss shall be maintained at 0.001% or less to total gpm. High Efficiency Mist Eliminator. The mist eliminator drift
Cooling Tower EP 09-06 - Light Plate Quench DCW	KY-0110 KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	90000 gal/min 8000 gal/min	TPM2.5 FPM, TPM10,	0.78 LB/HR 0.06 LB/HR	loss shall be maintained at 0.001% or less to total gpm. High Efficiency Mist Eliminator. The mist eliminator drift
Cooling Tower EP 09-07 - Heavy Plate Quench	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	3000 gal/min	TPM2.5 FPM, TPM10,	0.06 LB/HR	loss shall be maintained at 0.001% or less to total gpm. High Efficiency Mist Eliminator. The mist eliminator drift
DCW Cooling Tower EP 09-08 - Air Separation Plant	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	14000 gal/min	TPM2.5 FPM, TPM10, TPM2.5	0.1 LB/HR	loss shall be maintained at 0.001% or less to total gpm. High Efficiency Mist Eliminator. The mist eliminator drift loss shall be maintained at 0.001% or less to total gpm.
Cooling Tower		,		5.7	TPM2.5		loss shall be maintained at 0.001% or less to total gpm.

Table B-18. Cooling Tower Recent Permit Limitations and Determinations of BACT for PM (Pr	rior 10 y	ears)	

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
Laminar Cooling Tower - Hot Mill Cells (EP 03-09)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	35000 gal/min	FPM, TPM10, TPM2.5	0.27 LB/HR	Mist Eliminator, 0.001% drift loss
Direct Cooling Tower-Caster & Roughing Mill Cells (EP 03- 10)	KY-0115	NUCOR STEEL GALLATIN, LLC	EL GALLATIN, LLC 4/19/2021 26300 gal/min FPM, TPM10, TPM2.5 0.17 LB/HR Mist E		Mist Eliminator, 0.001% drift loss		
Melt Shop #2 Cooling Tower (indirect) (EP 03-11)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	59500 gal/min	FPM, TPM10, TPM2.5	0.39 LB/HR	Mist Eliminator, 0.001% drift loss
Cold Mill Cooling Tower (EP 03 12)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	20000 gal/min	FPM, TPM10, TPM2.5	0.14 LB/HR	Mist Eliminator, 0.001% drift loss
Air Separation Plant Cooling Tower (EP 03-13)	KY-0115	NUCOR STEEL GALLATIN, LLC	4/19/2021	15000 gal/min	FPM, TPM10, TPM2.5	0.08 LB/HR	Mist Eliminator, 0.001% drift loss
DCW Auxiliary Cooling Tower (EP 03-14)			4/19/2021	9250 gal/min	FPM, TPM10, TPM2.5	0.06 LB/HR	Mist Eliminator, 0.001% drift loss

¹ The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.
² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different then technology used at the proposed facility, they are not appropriate for comparison.
* Indicates that the facilities are draft determination in the RBLC database.

Table B-19. Ball Crushing Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
					Comparable Facilities ¹		
Raw and Waste Material Storage and Handling Slag Yard	FL-0368	NUCOR STEEL FLORIDA FACILITY	02/14/2019	-	PM Filterable	0	Use of equipment enclosures, water sprays, and minimizing wind erosion and drop points
Slag/Mill Scale Control Device		NUCOR STEEL MISSOURI FACILITY	9/12/2018	-	PM/PM ₁₀ /PM _{2.5}	0	Water spray or dust suppressant emission control system in slag yard when screens or crusher are operating. Minimize drop heights.
				N	ot Comparable Facilities ²		
North Alloy Storage and Handling (F006)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		Particulate matter, total (TPM)	0.68 lb/hr 0.0024 gr/dscf	Fabric filter
North Alloy Storage and Handling (F006)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		Particulate matter, total 10 (TPM10)	0.68 lb/hr 0.0024 gr/dscf	Fabric filter
North Alloy Storage and Handling (F006)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019		Particulate matter, total 2.5 (TPM2.5)	0.68 lb/hr 0.0024 gr/dscf	Fabric filter
Raw Material Handling and Processing (carbon dump fugitives)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018		Particulate matter, filterable (FPM)	0	Good Work Practice Standards and Proper Operation and Maintenance.
Raw Material Handling and Processing (lime dump fugitives)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018		Particulate matter, filterable (FPM)	0	Good Work Practice Standards and Proper Operation and Maintenance
Raw Material Handling and Processing (alloy grizzly fugitives)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018	-	Particulate matter, filterable (FPM)	0	Good Work Practice Standards and Proper Operation and Maintenance.
Raw Material Handling and Processing (misc. debris handling)	SC-0183	NUCOR STEEL - BERKELEY	05/04/2018		Particulate matter, filterable (FPM)	0	Good Work Practice Standards and Proper Operation and Maintenance.
Slag Handling and Conveying	AR-0173	BIG RIVER STEEL LLC	1/31/2022		FPM	1.11 TPY	Dust Control Plan
Slag Handling and Conveying	AR-0173	BIG RIVER STEEL LLC	1/31/2022		TPM10	0.37 TPY	Dust Control Plan
Slag Handling and Conveying	AR-0173	BIG RIVER STEEL LLC	1/31/2022		TPM2.5	0.1 TPY	Dust Control Plan
EP 12-01 - Slag Processing Equipment	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1750000 tons steel cast/yr	FPM	0.012 lb/ton	Slag Processing (EP 12-01) shall only be performed on wetted material.
EP 12-01 - Slag Processing Equipment	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1750000 tons steel cast/yr	TPM10	0.005 lb/ton	Slag Processing (EP 12-01) shall only be performed on wetted material.

Table B-19. Ball Crushing Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)	Production Capacity (US tpy)	Particulate Matter Type	Permitted PM Limit	Control
EP 12-01 - Slag Processing Equipment	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	1750000 tons steel cast/yr	ТРМ2.5	0.003 lb/ton	Slag Processing (EP 12-01) shall only be performed on wetted material.
Slag Handling, Crushing and Screening	TN-0183	SINOVA SILICON LLC			FPM	0.068 lb/hr	Water misting for crushing ands screening operations
Slag Handling, Crushing and Screening	TN-0183	SINOVA SILICON LLC			TPM10	0.0256 lb/hr	Water misting for crushing ands screening operations
Slag Handling, Crushing and Screening	TN-0183	SINOVA SILICON LLC			ТРМ2.5	0.003 lb/hr	Water misting for crushing ands screening operations

¹ The Nucor Missouri facility was not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

² These RLC listings are different than technology used at the proposed facility, they are not appropriate for comparison. * Indicates that the facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-20. Roads Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Table B-20. Rodus Recent Perm	nit Limitati	ons and Determination	ns of BACT for I	PM (Prior 10 years)		1	
Process	RBLC ID	Facility	Permit Date (from RBLC)	Distance Traveled	Particulate Matter Type	Permitted PM Limit	Control
Buildin	g or Struct	ure Housing Any Iron (or Steel Foundi	y Emissions Source, N	NESHAP EEEEE	20% opacity from fugitive emissions (6-minute average)	
	New I	Large Iron and Steel Fe	oundries Area S	Sources, NESHAP ZZZZ	22	20% opacity from fugitive emissions (6 min average)	
Fugitive	e Dust fron	n Dust-Generating Ope	erations, Marico	opa County Regulation	n III Rule 310	20% opacity from fugitive emissions	Dust Control Plan for dust-generating operations that disturbs a surface area of 0.10 acre or greater.
Unpaved Parking Lots, Staging	g Areas, ar		rt equipment a Section 307.2	nd Vehicles Operate, I	Maricopa County Regulation III Rule		One of the following: apply and maintain water; apply and maintain dust suppressant other than water; apply and maintain a layer of washed gravel that is at least six inches deep.
Haul/Access Roads tha	t Are Not i	n Permanent Areas of	a Facility, Mari	copa County Regulati	on III Rule 316 Section 307.3		One of the following: speed control and watering; install and maintain a paved surface; apply and maintain a layer of washed gravel that is at least six inches deep; apply and maintain dust suppressant other than water; install and maintain a cohesive hard surface. If these options are infeasible then a minimum distance of 25 feet must be maintained between the property line and the haul/access road.
Roadways and Stree	ts, Emissio	ons from Existing and I	New Nonpoint :	Sources, Arizona Adm	inistrative Code R18-2-605	Prevent excessive amounts of particulate matter from becoming airborne	Temporary paving, dust suppressants, wetting down, detouring or other reasonable means.
Roadways and Stree	ts, Emissio	ons from Existing and I	New Nonpoint S	Sources, Arizona Adm	inistrative Code R18-2-605	Prevent excessive amounts of particulate matter from becoming airborne	Wetting, applying dust suppressants, or covering the load
					Comparable Facilities ¹		
Roads	FL-0368	NUCOR STEEL FLORIDA FACILITY	02/14/2019		PM Fugitive	0	Fugitive Dust Control Plan
Paved Roads and Surfaces		CMC MESA	6/14/2018		РМ	0	Road watering and/or vacuuming system for the paved haul roads to keep the road surfaces sufficiently moist to comply with the opacity limitations. The paved area shall be watered and vacuumed, in a manner designed to ensure capture of the vacuumed material, at least once every shift. These measures shall ensure 96% control efficiency for haul road PM emissions. More frequent vacuuming and/or watering may be required to ensure compliance with the opacity limitation.
Unpaved Staging Areas, Unpaved Parking Areas, and Unpaved Material Storage Areas		CMC MESA	6/14/2018		РМ	0	Apply water so that the surface is visibly moist; pave; apply and maintain gravel, recycled asphalt, or other suitable material; apply or maintain a suitable dust suppressant other than water; or limit vehicle trips to no more than 20 per day per road and limit vehicle speeds to no more than 15 mph.
Unpaved Haul/Access Roads		CMC MESA	6/14/2018		РМ	0	Apply water so that the surface is visibly moist; pave; apply and maintain gravel, recycled asphalt, or other suitable material; apply or maintain a suitable dust suppressant other than water; or limit vehicle trips to no more than 20 per day per road and limit vehicle speeds to no more than 15 mph.

Table B-20. Roads Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Table B-20. Roads Recent Pern Process	RBLC ID	Facility	Permit Date (from RBLC)	Distance Traveled	Particulate Matter Type	Permitted PM Limit	Control
Roads		CMC OK	1/15/2016		TSP/PM ₁₀ /PM _{2.5}	0	Work practice standards of paving and sweeping of haul roads when needed, and setting of speed limits on plant roads to minimize fugitive dust emissions.
Haul Roads		NUCOR MISSOURI FACILITY	9/12/2018		PM/PM ₁₀ /PM _{2.5}	0	Work practice standards of cleaning, watering and/or vacuum-sweeping paved and unpaved haul roads. Application of watering at a minimum rate of 0.1 gallons per square foot of unpaved haul road surface area per day. Speed limit of 25 mph on unpaved haul roads. Silt loading sampling for paved haul roads not to exceed 0.3 grams per square meter per individual sample. Paving with concrete or asphalt. Maintain a Fugitive Dust Control Plan.
					Not Comparable Facilities ²		
Plant Roadways & Parking Areas (F005)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	686,399 miles per year	PM Fugitive	16.74 tpy	Paved: sweeping, vacuuming, washing with water, and posted speed limits to comply with the applicable requirements. Unpaved: use of dust suppressant as necessary to comply with the applicable requirements.
Plant Roadways & Parking Areas (F005)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	686,399 miles per year	PM ₁₀ Filterable	3.55 tpy	Paved: sweeping, vacuuming, washing with water, and posted speed limits to comply with the applicable requirements. Unpaved: use of dust suppressant as necessary to comply with the applicable requirements.
Plant Roadways & Parking Areas (F005)	*OH-0381	NORTHSTAR BLUESCOPE STEEL, LLC	09/27/2019	686,399 miles per year	PM _{2.5} Filterable	0.75 tpy	Paved: sweeping, vacuuming, washing with water, and posted speed limits to comply with the applicable requirements. Unpaved: use of dust suppressant as necessary to comply with the applicable requirements.
Paved Roadways	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	FPM	2.8 TPY	Development and Implementation of Fugitive Dust Control Plan
Paved Roadways	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	TPM10	0.6 TPY	Development and Implementation of Fugitive Dust Control Plan
Paved Roadways	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	TPM2.5	0.2 TPY	Development and Implementation of Fugitive Dust Control Plan
Unpaved Roadways	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	FPM	0.81 TPY	Development and Implementation of Fugitive Dust Control Plan
Unpaved Roadways	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	TPM10	0.38 TPY	Development and Implementation of Fugitive Dust Control Plan
Unpaved Roadways	AR-0173	BIG RIVER STEEL LLC	1/31/2022	0	TPM2.5	0.06 TPY	Development and Implementation of Fugitive Dust Control Plan
Roadways	IL-0126	NUCOR STEEL KANKAKEE, INC.	11/01/2018		PM Filterable	2.39 tpy	Roadways must be paved; Preventative measures, including posted 15 MPH speed limit and good work practices (e.g., water flushing, vacuuming and sweeping)
Roadways	IL-0126	NUCOR STEEL KANKAKEE, INC.	11/01/2018		PM ₁₀ Total	0.48 tpy	Roadways must be paved; Preventative measures, including posted 15 MPH speed limit and good work practices (e.g., water flushing, vacuuming and sweeping)
Roadways	IL-0126	NUCOR STEEL KANKAKEE, INC.	11/01/2018		PM _{2.5} Total	0.12 tpy	Roadways must be paved; Preventative measures, including posted 15 MPH speed limit and good work practices (e.g., water flushing, vacuuming and sweeping)
New and Modified Roadways	IL-0132	NUCOR STEEL KANKAKEE, INC	1/25/2021	0	ТРМ	0	Roadways shall be paved; speed limit posting of 15 miles/hour; best management practices to reduce fugitive emissions in accordance with written operating program that provides for cleaning or treatment of roadways
New and Modified Roadways	IL-0132	NUCOR STEEL KANKAKEE, INC	1/25/2021	0	TPM10	0	Roadways shall be paved; speed limit posting of 15 miles/hour; best management practices to reduce fugitive emissions in accordance with written operating program that provides for cleaning or treatment of roadways
New and Modified Roadways	IL-0132	NUCOR STEEL KANKAKEE, INC	1/25/2021	0	TPM2.5	0	Roadways shall be paved; speed limit posting of 15 miles/hour; best management practices to reduce fugitive emissions in accordance with written operating program that provides for cleaning or treatment of roadways

Table B-20. Roads Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

Process	RBLC ID	Facility	Permit Date (from RBLC)		Particulate Matter Type	Permitted PM Limit	Control
EP 14-01 - Paved Roadways	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	374840 miles per year	Particulate matter, fugitive	0	surface improvements (pavement), sweeping (good work practice) and watering
EP 14-02 - Unpaved Roadways	KY-0110	NUCOR STEEL BRANDENBURG	7/23/2020	69905 miles per year	Particulate matter, fugitive	0	surface improvements (pavement), sweeping (good work practice) and watering

¹ The CMC Mesa, CMC OK and Nucor Missouri facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility. ² These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison. * Indicates that the facilities are draft determination in the RBLC database.

APPENDIX C. ROAD SEGMENTS DETAILS

				One Way/Two				oad Length (ype (%)	Distance (m) Distance (ft) Surface Model Objects
Vehicle	<u> </u>	Destination	Truck ID	Way?	Material	Vehicle Type	Paved	Unpaved	Total		%Unpaved	Segment ID
1	Off-Site	ECS Building Scrap Bay	TRK1	2	Scrap	Haul Truck	2,696	0	2,696	100%	0%	-
2	Off-Site	Scrap Yard	TRK2	2	Scrap	Haul Truck	2,632	1,219	3,852	68%	32%	-
3	Around Scrap Yard	Around Scrap Yard	TRK3	2	Scrap	Euclid/Roll-Off Truck	2,194	0	2,194	100%	0%	-
4	Around Scrap Yard	Around Scrap Yard	TRK4	2	Scrap	Haul Truck	2,194	0	2,194	100%	0%	-
5	Off-Site	Silos	TRK5	2	Coal/Coke	Haul Truck	2,814	74	2,888	97%	3%	-
6	Off-Site	Storage	TRK6	2	Raw Materials / Supplies	Euclid/Roll-off Truck	3,439	0	3,439	100%	0%	-
7	Storage	Meltshop	TRK7	2	Raw Materials / Supplies	Forklift/Loader	338	0	338	100%	0%	-
8	Off-Site	Silos	TRK8	2	Fluxing Agent	Haul Truck	2,814	74	2,888	97%	3%	-
9	Off-Site	Alloy Pile	TRK9	2	Alloy Aggregate	Haul Truck	3,051	0	3,051	100%	0%	-
10	Meltshop	Off-Site	TRK10	2	Removed Refractory / Other Materials	Haul Truck	3,215	0	3,215	100%	0%	-
11	Finished Products Storage	Off-Site	TRK11	2	Finished Product	Haul Truck	7,598	0	7,598	100%	0%	-
12	Off-Site	Gas Storage Area	TRK12	2	Gas	Gas Truck	3,439	0	3,439	100%	0%	-
13	Mill Scale Pile	Off-Site	TRK13	2	Mill Scale	Haul Truck	4,480	0	4,480	100%	0%	-
14	Meltshop	Quench Building	TRK14	2	Slag	Euclid/Roll-off Truck	369	132	501	74%	26%	-
15	Quench Building	SPP Area	TRK15	2	Slag	Euclid/Roll-off Truck	0	454	454	0%	100%	-
16	Within SPP Area	Within SPP Area	TRK16	2	Slag	Loader	0	549	549	0%	100%	-
17	SPP Area	Off-Site	TRK17	2	Slag	Haul Truck	2,758	263	3,021	91%	9%	-
18	Trailer Parking Area	Trailer Parking Area	TRK18	2	-	Trailer	1,918	0	1,918	100%	0%	-
19	General Support	General Support	TRK19	2	-	Loader	8,839	2,163	11,002	80%	20%	-
1	Off-Site	ECS Building Scrap Bay	TRK1	2	Scrap	Haul Truck			100%			2,696
2	Off-Site	Scrap Yard	TRK2	2	Scrap	Haul Truck			100%			3,852
3	Around Scrap Yard	Around Scrap Yard	TRK3	2	Scrap	Euclid/Roll-Off Truck			100%			2,194
4	Around Scrap Yard	Around Scrap Yard	TRK4	2	Scrap	Haul Truck			100%			2,194
5	Off-Site	Silos	TRK5	2	Coal/Coke	Haul Truck			100%			2,888
6	Off-Site	Storage	TRK6	2	Raw Materials / Supplies	Euclid/Roll-off Truck			100%			3,439
7	Storage	Meltshop	TRK7	2	Raw Materials / Supplies	Forklift/Loader			100%			338
8	Off-Site	Silos	TRK8	2	Fluxing Agent	Haul Truck			100%			2,888
9	Off-Site	Alloy Pile	TRK9	2	Alloy Aggregate	Haul Truck			100%			3,051
10	Meltshop	Off-Site	TRK10	2	Removed Refractory / Other Materials	Haul Truck			100%			3,215
	Finished Products Storage	Off-Site	TRK11	2	Finished Product	Haul Truck			100%			7,598
	Off-Site	Gas Storage Area	TRK12	2	Gas	Gas Truck			100%			3,439
13	Mill Scale Pile	Off-Site	TRK13	2	Mill Scale	Haul Truck			100%			4,480
14	Meltshop	Quench Building	TRK14	2	Slag	Euclid/Roll-off Truck			100%			501
15	Quench Building	SPP Area	TRK15	2	Slag	Euclid/Roll-off Truck			100%			454
	Within SPP Area	Within SPP Area	TRK16	2	Slag	Loader			100%			549
	SPP Area	Off-Site	TRK17	2	Slag	Haul Truck			100%			3,021
18	Trailer Parking Area	Trailer Parking Area	TRK18	2	-	Trailer			100%			1,918
	General Support	General Support	TRK19	2	-	Loader			100%			11,002

				584.75	36.04	124.43	57.15	19.27	55.41	49.29	50.66	122.31	209.42	55.39	17.38	71.68
				1,918	118	408	188	63	182	162	166	401	687	182	57	235
				Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved
				34	6	7	9	3	9	8	6	13	23	6	3	8
Vehicle	Origin	Destination	Truck ID	PR1	PR2	PR3	PR4	PR5	PR6A	PR6B	PR7	PR8	PR9	PR10	PR11	PR12
1	Off-Site	ECS Building Scrap Bay	TRK1	Х	Х	X	Х	X	_	-			-			
2	Off-Site	Scrap Yard	TRK2	Х	Х	Х	Х									
	Around Scrap Yard	Around Scrap Yard	TRK3			Х	Х		Х	Х	Х	Х	Х			1
4	Around Scrap Yard	Around Scrap Yard	TRK4			Х	Х		Х	Х	Х	Х	Х			
5	Off-Site	Silos	TRK5	Х	Х	Х	Х		Х							
6	Off-Site	Storage	TRK6	Х	Х	Х	Х		Х	Х				Х		Х
7	Storage	Meltshop	TRK7												Х	Х
8	Off-Site	Silos	TRK8	Х	Х	Х	Х		Х							1
9	Off-Site	Alloy Pile	TRK9	Х	Х	Х										
10	Meltshop	Off-Site	TRK10	Х	Х	Х	Х		Х	Х				Х	Х	
11	Finished Products Storage	Off-Site	TRK11	Х												
12	Off-Site	Gas Storage Area	TRK12	Х	Х	Х	Х		Х	Х				Х		Х
13	Mill Scale Pile	Off-Site	TRK13	Х												
14	Meltshop	Quench Building	TRK14				Х		Х							
15	Quench Building	SPP Area	TRK15													
16	Within SPP Area	Within SPP Area	TRK16													
17	SPP Area	Off-Site	TRK17	Х												1
18	Trailer Parking Area	Trailer Parking Area	TRK18	Х												1
	General Support	General Support	TRK19		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1	Off-Site	ECS Building Scrap Bay	TRK1	1,918	118	408	188	63								
2	Off-Site	Scrap Yard	TRK2	1,918	118	408	188									1
3	Around Scrap Yard	Around Scrap Yard	TRK3			408	188		182	162	166	401	687			
4	Around Scrap Yard	Around Scrap Yard	TRK4			408	188		182	162	166	401	687			
5	Off-Site	Silos	TRK5	1,918	118	408	188		182							
6	Off-Site	Storage	TRK6	1,918	118	408	188		182	162				182		235
7	Storage	Meltshop	TRK7												57	235
8	Off-Site	Silos	TRK8	1,918	118	408	188		182							
9	Off-Site	Alloy Pile	TRK9	1,918	118	408										
10	Meltshop	Off-Site	TRK10	1,918	118	408	188		182	162				182	57	
11	Finished Products Storage	Off-Site	TRK11	1,918												
12	Off-Site	Gas Storage Area	TRK12	1,918	118	408	188		182	162				182		235
13	Mill Scale Pile	Off-Site	TRK13	1,918												
14	Meltshop	Quench Building	TRK14				188		182							
15	Quench Building	SPP Area	TRK15													
16	Within SPP Area	Within SPP Area	TRK16													
17	SPP Area	Off-Site	TRK17	1,918												
18	Trailer Parking Area	Trailer Parking Area	TRK18	1,918												
	General Support	General Support	TRK19		118	408	188	63	182	162	166	401	687	182	57	235

				14.08	129.6	119.3	95.21	111.58	26.01	107.11	26.67	70.56	72.44	28.53	13.13	53.54
				46	425	391	312	366	85	351	88	231	238	94	43	176
				Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved
				2	14	13	10	11	4	12	4	12	12	5	2	9
Vehicle		Destination	Truck ID	PR13	PR14A	PR14B	PR15	PR16	PR17	PR18	PR19	PR20	PR21	PR22	PR23	PR24
	Off-Site	ECS Building Scrap Bay	TRK1													
	Off-Site	Scrap Yard	TRK2													1
	Around Scrap Yard	Around Scrap Yard	TRK3													1
	Around Scrap Yard	Around Scrap Yard	TRK4													1
	Off-Site	Silos	TRK5													1
6	Off-Site	Storage	TRK6	Х												1
7	Storage	Meltshop	TRK7	Х												1
	Off-Site	Silos	TRK8													1
9	Off-Site	Alloy Pile	TRK9									Х	Х	Х	Х	1
	Meltshop	Off-Site	TRK10													1
11	Finished Products Storage	Off-Site	TRK11		Х	Х	Х	Х	Х	Х	Х					Х
12	Off-Site	Gas Storage Area	TRK12	Х												1
13	Mill Scale Pile	Off-Site	TRK13													Х
14	Meltshop	Quench Building	TRK14													1
15	Quench Building	SPP Area	TRK15													1
16	Within SPP Area	Within SPP Area	TRK16													1
17	SPP Area	Off-Site	TRK17													1
18	Trailer Parking Area	Trailer Parking Area	TRK18													1
19	General Support	General Support	TRK19	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1	Off-Site	ECS Building Scrap Bay	TRK1													í – – – – – – – – – – – – – – – – – – –
2	Off-Site	Scrap Yard	TRK2													1
3	Around Scrap Yard	Around Scrap Yard	TRK3													1
4	Around Scrap Yard	Around Scrap Yard	TRK4													1
5	Off-Site	Silos	TRK5													1
6	Off-Site	Storage	TRK6	46												1
7	Storage	Meltshop	TRK7	46												
8	Off-Site	Silos	TRK8													
9	Off-Site	Alloy Pile	TRK9									231	238	94	43	
10	Meltshop	Off-Site	TRK10													
11	Finished Products Storage	Off-Site	TRK11		425	391	312	366	85	351	88					176
12	Off-Site	Gas Storage Area	TRK12	46												
13	Mill Scale Pile	Off-Site	TRK13													176
14	Meltshop	Quench Building	TRK14													
15	Quench Building	SPP Area	TRK15													
	Within SPP Area	Within SPP Area	TRK16													
	SPP Area	Off-Site	TRK17													
	Trailer Parking Area	Trailer Parking Area	TRK18													
	General Support	General Support	TRK19	46	425	391	312	366	85	351	88	231	238	94	43	176

				26.64 87	76.98 253	9.83 32	119.87 393	42.71 140	159.36 523	126.36 415	168.59 553	72.54 238	116.72 383	38.46 126	217.38 713	17.81 58
				Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Paved	Unpaved
				4	13	2	20	7	17	21	18	8	13	4	24	3
Vehicle		Destination	Truck ID	PR25	PR26	PR27	PR28	PR29A	PR29B	PR30	PR31	PR32	PR33	PR34	PR35	UPR1
	Off-Site	ECS Building Scrap Bay	TRK1													
	Off-Site	Scrap Yard	TRK2													
	Around Scrap Yard	Around Scrap Yard	TRK3													
	Around Scrap Yard	Around Scrap Yard	TRK4													
	Off-Site	Silos	TRK5													
6	Off-Site	Storage	TRK6													
	Storage	Meltshop	TRK7													
	Off-Site	Silos	TRK8													
	Off-Site	Alloy Pile	TRK9													
	Meltshop	Off-Site	TRK10													
	Finished Products Storage	Off-Site	TRK11				Х	Х	Х	Х	Х	Х	Х	Х	Х	
12	Off-Site	Gas Storage Area	TRK12													
13	Mill Scale Pile	Off-Site	TRK13	Х	Х	Х					Х	Х	Х	Х	Х	
	Meltshop	Quench Building	TRK14													Х
15	Quench Building	SPP Area	TRK15													
16	Within SPP Area	Within SPP Area	TRK16													
17	SPP Area	Off-Site	TRK17											Х	Х	
18	Trailer Parking Area	Trailer Parking Area	TRK18													
	General Support	General Support	TRK19	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х
	Off-Site	ECS Building Scrap Bay	TRK1													
	Off-Site	Scrap Yard	TRK2													
3	Around Scrap Yard	Around Scrap Yard	TRK3													
4	Around Scrap Yard	Around Scrap Yard	TRK4													
5	Off-Site	Silos	TRK5													
6	Off-Site	Storage	TRK6													
7	Storage	Meltshop	TRK7													
8	Off-Site	Silos	TRK8													
9	Off-Site	Alloy Pile	TRK9													
10	Meltshop	Off-Site	TRK10													
11	Finished Products Storage	Off-Site	TRK11				393	140	523	415	553	238	383	126	713	
12	Off-Site	Gas Storage Area	TRK12													
13	Mill Scale Pile	Off-Site	TRK13	87	253	32					553	238	383	126	713	
14	Meltshop	Quench Building	TRK14													58
15	Quench Building	SPP Area	TRK15													
16	Within SPP Area	Within SPP Area	TRK16													
17	SPP Area	Off-Site	TRK17											126	713	
18	Trailer Parking Area	Trailer Parking Area	TRK18													
19	General Support	General Support	TRK19	87	253	32	393	140	523	415	553	238	383	126		58

				106.25	32.09	28.98	44.87	35.19	22.46	44.07	18.92	29.54	136.01	27.47	115.6
				349	105	95	147	115	74	145	62	97	446	90	379
				Unpaved		Unpaved	Unpaved	Unpaved	Unpaved						
				18	5	5	7	6	4	7	3	5	23	5	19
Vehicle	Origin	Destination	Truck ID	UPR2	UPR3	UPR4	ÚPR5	UPR6	UPR7	ÚPR8	UPR9	UPR10	UPR11	UPR12	UPR13
	Off-Site	ECS Building Scrap Bay	TRK1	_		-			-				_		
	Off-Site	Scrap Yard	TRK2							Х	Х	Х	Х	Х	Х
	Around Scrap Yard	Around Scrap Yard	TRK3												
	Around Scrap Yard	Around Scrap Yard	TRK4												
	Off-Site	Silos	TRK5						Х						
6	Off-Site	Storage	TRK6												
7	Storage	Meltshop	TRK7												
8	Off-Site	Silos	TRK8						Х						
9	Off-Site	Alloy Pile	TRK9												
10	Meltshop	Off-Site	TRK10												
11	Finished Products Storage	Off-Site	TRK11												
12	Off-Site	Gas Storage Area	TRK12												
13	Mill Scale Pile	Off-Site	TRK13												
14	Meltshop	Quench Building	TRK14						Х						
15	Quench Building	SPP Area	TRK15	Х	Х										
16	Within SPP Area	Within SPP Area	TRK16	Х	Х	Х									
17	SPP Area	Off-Site	TRK17				Х	Х							
18	Trailer Parking Area	Trailer Parking Area	TRK18												
19	General Support	General Support	TRK19	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
1	Off-Site	ECS Building Scrap Bay	TRK1												
2	Off-Site	Scrap Yard	TRK2							145	62	97	446	90	379
	Around Scrap Yard	Around Scrap Yard	TRK3												
4	Around Scrap Yard	Around Scrap Yard	TRK4												
	Off-Site	Silos	TRK5						74						
6	Off-Site	Storage	TRK6												
	Storage	Meltshop	TRK7												
8	Off-Site	Silos	TRK8						74						
9	Off-Site	Alloy Pile	TRK9												
	Meltshop	Off-Site	TRK10												
	Finished Products Storage	Off-Site	TRK11												
	Off-Site	Gas Storage Area	TRK12												
	Mill Scale Pile	Off-Site	TRK13												
	Meltshop	Quench Building	TRK14						74						
	Quench Building	SPP Area	TRK15	349	105										
	Within SPP Area	Within SPP Area	TRK16	349	105	95									
	SPP Area	Off-Site	TRK17				147	115							
	Trailer Parking Area	Trailer Parking Area	TRK18												
19	General Support	General Support	TRK19	349	105	95	147	115	74	145	62	97	446	90	379